These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28437931)

  • 1. Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm.
    Yasuhara K; Yu F; Ishigure T
    Opt Express; 2017 Apr; 25(8):8524-8533. PubMed ID: 28437931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular core single-mode 3-dimensional crossover polymer waveguides fabricated with the Mosquito method.
    Rasel OF; Ishigure T
    Opt Express; 2019 Oct; 27(22):32465-32479. PubMed ID: 31684459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm.
    Xu X; Ma L; Jiang S; He Z
    Opt Express; 2017 Oct; 25(21):25689-25696. PubMed ID: 29041233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fan-in/out polymer optical waveguide for a multicore fiber fabricated using the mosquito method.
    Suganuma D; Ishigure T
    Opt Express; 2015 Jan; 23(2):1585-93. PubMed ID: 25835916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flip-chip optical couplers with scalable I/O count for silicon photonics.
    Soganci IM; La Porta A; Offrein BJ
    Opt Express; 2013 Jul; 21(13):16075-85. PubMed ID: 23842395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dry-film polymer waveguide for silicon photonics chip packaging.
    Hsu HH; Nakagawa S
    Opt Express; 2014 Sep; 22(19):23379-84. PubMed ID: 25321807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method.
    Kinoshita R; Suganuma D; Ishigure T
    Opt Express; 2014 Apr; 22(7):8426-37. PubMed ID: 24718216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2010 Nov; 18(24):25283-91. PubMed ID: 21164876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 90°-bent graded-index core polymer waveguide for a high-bandwidth-density VCSEL-based optical engine.
    Kohmu N; Ishii M; Hatai R; Ishigure T
    Opt Express; 2022 Jan; 30(3):4351-4364. PubMed ID: 35209673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suspended optical fiber-to-waveguide mode size converter for silicon photonics.
    Fang Q; Liow TY; Song JF; Tan CW; Yu MB; Lo GQ; Kwong DL
    Opt Express; 2010 Apr; 18(8):7763-9. PubMed ID: 20588617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of electro-optic polymer modulators with low-loss fluorinated polymer waveguides.
    Ahn SW; Steier WH; Kuo YH; Oh MC; Lee HJ; Zhang C; Fetterman HR
    Opt Lett; 2002 Dec; 27(23):2109-11. PubMed ID: 18033457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized optical coupling to silica-clad photonic crystal waveguides.
    Terada Y; Miyasaka K; Kondo K; Ishikura N; Tamura T; Baba T
    Opt Lett; 2017 Nov; 42(22):4695-4698. PubMed ID: 29140345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and fully CMOS-compatible low-loss fiber coupling structure for a silicon photonics platform.
    Maegami Y; Okano M; Cong G; Suzuki K; Ohno M; Narushima T; Yokoyama N; Seki M; Ohtsuka M; Namiki S; Yamada K
    Opt Lett; 2020 Apr; 45(7):2095-2098. PubMed ID: 32236077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental assessment of SU-8 optical waveguides buried in plastic substrate for optical interconnections.
    Hamid HH; Fickenscher T; Thiel DV
    Appl Opt; 2015 Aug; 54(22):6623-31. PubMed ID: 26368073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directly inscribed multimode polymer waveguide and 3D device for high-speed and high-density optical interconnects.
    Xu X; Ma L; Shi Y; Ishigure T; He Z
    Opt Express; 2019 Aug; 27(16):22419-22428. PubMed ID: 31510536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer waveguide backplanes for optical sensor interfaces in microfluidics.
    Lee KS; Lee HL; Ram RJ
    Lab Chip; 2007 Nov; 7(11):1539-45. PubMed ID: 17960283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics and crosstalk of optical waveguides fabricated in polymethyl methacrylate polymer circuit board.
    Hamid HH; Rüter CE; Thiel DV; Fickenscher T
    Appl Opt; 2016 Nov; 55(32):9017-9021. PubMed ID: 27857284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and analysis of a low-loss in-fiber active polymer waveguide.
    Smith KH; Markos DJ; Ipson BL; Schultz SM; Selfridge RH; Barber JP; Campbell KJ; Monte TD; Dyott RB
    Appl Opt; 2004 Feb; 43(4):933-9. PubMed ID: 14960088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and transmission of optical polymer waveguide backplane for high - performance computers.
    Yang S; Yang L; Li B; Luo F; Wang X; Du Y
    Opt Express; 2020 May; 28(10):14605-14617. PubMed ID: 32403498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.