BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28437969)

  • 1. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum.
    Chen J; Wan C; Kong L; Zhan Q
    Opt Express; 2017 Apr; 25(8):8966-8974. PubMed ID: 28437969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tightly focused optical field with controllable photonic spin orientation.
    Chen J; Wan C; Kong LJ; Zhan Q
    Opt Express; 2017 Aug; 25(16):19517-19528. PubMed ID: 29041145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of focused beam with controllable arbitrary homogeneous polarization using engineered vectorial optical fields.
    Rui G; Chen J; Wang X; Gu B; Cui Y; Zhan Q
    Opt Express; 2016 Oct; 24(21):23667-23676. PubMed ID: 27828203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical generation of multiple focal spot pairs with controllable position and polarization.
    Zhang Y; Chen J; Bai C; Zhang D; Zhan Q
    Opt Express; 2020 Aug; 28(18):26706-26716. PubMed ID: 32906939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation.
    Wang J; Chen W; Zhan Q
    Opt Express; 2010 Oct; 18(21):21965-72. PubMed ID: 20941097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffraction-limited near-spherical focal spot with controllable arbitrary polarization using single objective lens.
    Wan C; Yu Y; Zhan Q
    Opt Express; 2018 Oct; 26(21):27109-27117. PubMed ID: 30469785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Polarization Möbius Strips and Points of Purely Transverse Spin Density.
    Bauer T; Neugebauer M; Leuchs G; Banzer P
    Phys Rev Lett; 2016 Jul; 117(1):013601. PubMed ID: 27419567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional characterization of tightly focused fields for various polarization incident beams.
    Cai Y; Liang Y; Lei M; Yan S; Wang Z; Yu X; Li M; Dan D; Qian J; Yao B
    Rev Sci Instrum; 2017 Jun; 88(6):063106. PubMed ID: 28667966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding of transverse spin angular momentum in tightly focused linearly polarized vortex beams.
    Zhang X; Shen B; Zhu Z; Rui G; He J; Cui Y; Gu B
    Opt Express; 2022 Feb; 30(4):5121-5130. PubMed ID: 35209481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization.
    Man Z; Fu S; Wei G
    J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1384-1391. PubMed ID: 29036105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly localized continuous wave optical vortex with controllable orbital angular momentum orientation and topological charge.
    Zeng Y; Chen J; Teng H; Mo D; Wu P; Chen M; Yu Y; Zhan Q
    Opt Express; 2023 Oct; 31(21):34503-34513. PubMed ID: 37859205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of optical spatial coherence on localized spin angular momentum density in tightly focused light [Invited].
    Wang Z; Yan C; Wang F; Chen Y; Cai Y
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):C58-C67. PubMed ID: 36520724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media.
    Gu B; Wen B; Rui G; Xue Y; Zhan Q; Cui Y
    Opt Lett; 2016 Apr; 41(7):1566-9. PubMed ID: 27192288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paraxial and tightly focused behaviour of the double ring perfect optical vortex.
    Rickenstorff C; Gómez-Pavón LDC; Sosa-Sánchez CT; Silva-Ortigoza G
    Opt Express; 2020 Sep; 28(19):28713-28726. PubMed ID: 32988136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization-free optical focal field engineering through reversing the radiation pattern from a uniform line source.
    Yu Y; Zhan Q
    Opt Express; 2015 Mar; 23(6):7527-34. PubMed ID: 25837091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin Hall Effect of Double-Index Cylindrical Vector Beams in a Tight Focus.
    Kovalev AA; Kotlyar VV
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Force Effects of Rayleigh Particles by Cylindrical Vector Beams.
    Zhao Y; Zhou L; Jiang X; Zhu L; Shi Q
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transverse spin angular momentum of tightly focused full Poincaré beams.
    Zhu W; Shvedov V; She W; Krolikowski W
    Opt Express; 2015 Dec; 23(26):34029-41. PubMed ID: 26832060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transversely oriented cylindrically polarized optical fields.
    Meng X; Wan C; Zhan Q
    Opt Express; 2022 Apr; 30(9):14897-14909. PubMed ID: 35473223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focal shift in tightly focused hybridly polarized Laguerre-Gaussian vector beams with zero radial index.
    Chen Y; Huang S; Chen M; Liu X
    J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1585-1591. PubMed ID: 30183014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.