These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28437969)

  • 1. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum.
    Chen J; Wan C; Kong L; Zhan Q
    Opt Express; 2017 Apr; 25(8):8966-8974. PubMed ID: 28437969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tightly focused optical field with controllable photonic spin orientation.
    Chen J; Wan C; Kong LJ; Zhan Q
    Opt Express; 2017 Aug; 25(16):19517-19528. PubMed ID: 29041145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of focused beam with controllable arbitrary homogeneous polarization using engineered vectorial optical fields.
    Rui G; Chen J; Wang X; Gu B; Cui Y; Zhan Q
    Opt Express; 2016 Oct; 24(21):23667-23676. PubMed ID: 27828203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical generation of multiple focal spot pairs with controllable position and polarization.
    Zhang Y; Chen J; Bai C; Zhang D; Zhan Q
    Opt Express; 2020 Aug; 28(18):26706-26716. PubMed ID: 32906939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation.
    Wang J; Chen W; Zhan Q
    Opt Express; 2010 Oct; 18(21):21965-72. PubMed ID: 20941097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffraction-limited near-spherical focal spot with controllable arbitrary polarization using single objective lens.
    Wan C; Yu Y; Zhan Q
    Opt Express; 2018 Oct; 26(21):27109-27117. PubMed ID: 30469785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Polarization Möbius Strips and Points of Purely Transverse Spin Density.
    Bauer T; Neugebauer M; Leuchs G; Banzer P
    Phys Rev Lett; 2016 Jul; 117(1):013601. PubMed ID: 27419567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional characterization of tightly focused fields for various polarization incident beams.
    Cai Y; Liang Y; Lei M; Yan S; Wang Z; Yu X; Li M; Dan D; Qian J; Yao B
    Rev Sci Instrum; 2017 Jun; 88(6):063106. PubMed ID: 28667966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding of transverse spin angular momentum in tightly focused linearly polarized vortex beams.
    Zhang X; Shen B; Zhu Z; Rui G; He J; Cui Y; Gu B
    Opt Express; 2022 Feb; 30(4):5121-5130. PubMed ID: 35209481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization.
    Man Z; Fu S; Wei G
    J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1384-1391. PubMed ID: 29036105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly localized continuous wave optical vortex with controllable orbital angular momentum orientation and topological charge.
    Zeng Y; Chen J; Teng H; Mo D; Wu P; Chen M; Yu Y; Zhan Q
    Opt Express; 2023 Oct; 31(21):34503-34513. PubMed ID: 37859205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of optical spatial coherence on localized spin angular momentum density in tightly focused light [Invited].
    Wang Z; Yan C; Wang F; Chen Y; Cai Y
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):C58-C67. PubMed ID: 36520724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media.
    Gu B; Wen B; Rui G; Xue Y; Zhan Q; Cui Y
    Opt Lett; 2016 Apr; 41(7):1566-9. PubMed ID: 27192288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paraxial and tightly focused behaviour of the double ring perfect optical vortex.
    Rickenstorff C; Gómez-Pavón LDC; Sosa-Sánchez CT; Silva-Ortigoza G
    Opt Express; 2020 Sep; 28(19):28713-28726. PubMed ID: 32988136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization-free optical focal field engineering through reversing the radiation pattern from a uniform line source.
    Yu Y; Zhan Q
    Opt Express; 2015 Mar; 23(6):7527-34. PubMed ID: 25837091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin Hall Effect of Double-Index Cylindrical Vector Beams in a Tight Focus.
    Kovalev AA; Kotlyar VV
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Force Effects of Rayleigh Particles by Cylindrical Vector Beams.
    Zhao Y; Zhou L; Jiang X; Zhu L; Shi Q
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transverse spin angular momentum of tightly focused full Poincaré beams.
    Zhu W; Shvedov V; She W; Krolikowski W
    Opt Express; 2015 Dec; 23(26):34029-41. PubMed ID: 26832060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transversely oriented cylindrically polarized optical fields.
    Meng X; Wan C; Zhan Q
    Opt Express; 2022 Apr; 30(9):14897-14909. PubMed ID: 35473223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focal shift in tightly focused hybridly polarized Laguerre-Gaussian vector beams with zero radial index.
    Chen Y; Huang S; Chen M; Liu X
    J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1585-1591. PubMed ID: 30183014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.