These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28437996)

  • 21. Transparent grating-based metamaterials for dynamic infrared radiative regulation smart windows.
    Wang P; Wang H; Sun Y; Zhang M; Chen S; Xiao C; Zhou H
    Phys Chem Chem Phys; 2024 Jun; 26(22):16253-16260. PubMed ID: 38804578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optically Transparent Metamaterial Absorber Using Inkjet Printing Technology.
    Jeong H; Tentzeris MM; Lim S
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perfect selective metamaterial solar absorbers.
    Wang H; Wang L
    Opt Express; 2013 Nov; 21 Suppl 6():A1078-93. PubMed ID: 24514927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. VO
    Bowei X; Wenjie Z; Junming Z; Linhua L
    Opt Express; 2022 Sep; 30(19):34314-34327. PubMed ID: 36242446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tunable wide-angle narrowband perfect absorber based on an optical cavity containing hyperbolic metamaterials.
    Xie Z; Zhu X; Deng Y; Chen Y
    Phys Chem Chem Phys; 2023 Nov; 25(42):29358-29364. PubMed ID: 37877334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Broadband thin-film and metamaterial absorbers using refractory vanadium nitride and their thermal stability.
    Wang W; Wang H; Yu P; Sun K; Tong X; Lin F; Wu C; You Y; Xie W; Li Y; Yuan C; Govorov AO; Muskens OL; Xu H; Sun S; Wang Z
    Opt Express; 2021 Oct; 29(21):33456-33466. PubMed ID: 34809157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiband-switchability and high-absorptivity of a metamaterial perfect absorber based on a plasmonic resonant structure in the near-infrared region.
    Liang J; Chen Y; Zhou Z; Chen S
    RSC Adv; 2022 Oct; 12(48):30871-30878. PubMed ID: 36349026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Femtosecond Laser-Induced Vanadium Oxide Metamaterial Nanostructures and the Study of Optical Response by Experiments and Numerical Simulations.
    Bhupathi S; Wang S; Abutoama M; Balin I; Wang L; Kazansky PG; Long Y; Abdulhalim I
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41905-41918. PubMed ID: 32838521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide.
    Wang T; Zhang H; Zhang Y; Zhang Y; Cao M
    Opt Express; 2020 Jun; 28(12):17434-17448. PubMed ID: 32679951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption.
    Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R
    Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vanadium Dioxide-Based Terahertz Metamaterial Devices Switchable between Transmission and Absorption.
    Jiang H; Wang Y; Cui Z; Zhang X; Zhu Y; Zhang K
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microwave Tunable Metamaterial Based on Semiconductor-to-Metal Phase Transition.
    Zhang G; Ma H; Lan C; Gao R; Zhou J
    Sci Rep; 2017 Jul; 7(1):5773. PubMed ID: 28720879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-Insulator Transition Detection of Vanadium Dioxide Thin Films by Visible Light Reflection.
    Allabergenov B; Yun S; Choi B
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47841-47852. PubMed ID: 36223756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide.
    Wu G; Jiao X; Wang Y; Zhao Z; Wang Y; Liu J
    Opt Express; 2021 Jan; 29(2):2703-2711. PubMed ID: 33726461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vanadium dioxide-assisted switchable multifunctional metamaterial structure.
    Qiu Y; Yan DX; Feng QY; Li XJ; Zhang L; Qiu GH; Li JN
    Opt Express; 2022 Jul; 30(15):26544-26556. PubMed ID: 36236843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transparent spacecraft smart thermal control device based on VO
    Wu B; Zhang D; Wang C; Zhang K; Wu X
    Phys Chem Chem Phys; 2023 Aug; 25(30):20302-20307. PubMed ID: 37096426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C.
    Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B
    Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies.
    Duan G; Schalch J; Zhao X; Zhang J; Averitt RD; Zhang X
    Opt Express; 2018 Feb; 26(3):2242-2251. PubMed ID: 29401764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Optically Transparent Metamaterial Absorber with Tunable Absorption Bandwidth and Low Infrared Emissivity.
    Chang Q; Ji J; Wu W; Ma Y
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.