These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 28438154)
1. Network-based analysis reveals novel gene signatures in peripheral blood of patients with chronic obstructive pulmonary disease. Obeidat M; Nie Y; Chen V; Shannon CP; Andiappan AK; Lee B; Rotzschke O; Castaldi PJ; Hersh CP; Fishbane N; Ng RT; McManus B; Miller BE; Rennard S; Paré PD; Sin DD Respir Res; 2017 Apr; 18(1):72. PubMed ID: 28438154 [TBL] [Abstract][Full Text] [Related]
2. Do sputum or circulating blood samples reflect the pulmonary transcriptomic differences of COPD patients? A multi-tissue transcriptomic network META-analysis. Faner R; Morrow JD; Casas-Recasens S; Cloonan SM; Noell G; López-Giraldo A; Tal-Singer R; Miller BE; Silverman EK; Agustí A; Hersh CP Respir Res; 2019 Jan; 20(1):5. PubMed ID: 30621695 [TBL] [Abstract][Full Text] [Related]
3. Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations. Busch R; Qiu W; Lasky-Su J; Morrow J; Criner G; DeMeo D Respir Res; 2016 Nov; 17(1):143. PubMed ID: 27814717 [TBL] [Abstract][Full Text] [Related]
4. Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network methods. Morrow JD; Qiu W; Chhabra D; Rennard SI; Belloni P; Belousov A; Pillai SG; Hersh CP BMC Med Genomics; 2015 Jan; 8():1. PubMed ID: 25582225 [TBL] [Abstract][Full Text] [Related]
5. Variable DNA methylation of aging-related genes is associated with male COPD. Du X; Yuan L; Wu M; Men M; He R; Wang L; Wu S; Xiang Y; Qu X; Liu H; Qin X; Hu C; Qin L; Liu C Respir Res; 2019 Nov; 20(1):243. PubMed ID: 31684967 [TBL] [Abstract][Full Text] [Related]
6. COPD association and repeatability of blood biomarkers in the ECLIPSE cohort. Dickens JA; Miller BE; Edwards LD; Silverman EK; Lomas DA; Tal-Singer R; Respir Res; 2011 Nov; 12(1):146. PubMed ID: 22054035 [TBL] [Abstract][Full Text] [Related]
7. Overexpression Of hsa-miR-664a-3p Is Associated With Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease Via Targeting FHL1. Zhong S; Chen C; Liu N; Yang L; Hu Z; Duan P; Shuai D; Zhang Q; Wang Y Int J Chron Obstruct Pulmon Dis; 2019; 14():2319-2329. PubMed ID: 31632001 [TBL] [Abstract][Full Text] [Related]
8. Identifying miRNA Modules and Related Pathways of Chronic Obstructive Pulmonary Disease Associated Emphysema by Weighted Gene Co-Expression Network Analysis. An J; Yang T; Dong J; Liao Z; Wan C; Shen Y; Chen L Int J Chron Obstruct Pulmon Dis; 2021; 16():3119-3130. PubMed ID: 34815668 [TBL] [Abstract][Full Text] [Related]
9. The value of blood cytokines and chemokines in assessing COPD. Bradford E; Jacobson S; Varasteh J; Comellas AP; Woodruff P; O'Neal W; DeMeo DL; Li X; Kim V; Cho M; Castaldi PJ; Hersh C; Silverman EK; Crapo JD; Kechris K; Bowler RP Respir Res; 2017 Oct; 18(1):180. PubMed ID: 29065892 [TBL] [Abstract][Full Text] [Related]
10. Meta-analysis of peripheral blood gene expression modules for COPD phenotypes. Reinhold D; Morrow JD; Jacobson S; Hu J; Ringel B; Seibold MA; Hersh CP; Kechris KJ; Bowler RP PLoS One; 2017; 12(10):e0185682. PubMed ID: 29016655 [TBL] [Abstract][Full Text] [Related]
11. Identification of dynamic signatures associated with smoking-related squamous cell lung cancer and chronic obstructive pulmonary disease. Sun X; Shang J; Wu A; Xia J; Xu F J Cell Mol Med; 2020 Jan; 24(2):1614-1625. PubMed ID: 31829519 [TBL] [Abstract][Full Text] [Related]
12. Systemic Markers of Adaptive and Innate Immunity Are Associated with Chronic Obstructive Pulmonary Disease Severity and Spirometric Disease Progression. Halper-Stromberg E; Yun JH; Parker MM; Singer RT; Gaggar A; Silverman EK; Leach S; Bowler RP; Castaldi PJ Am J Respir Cell Mol Biol; 2018 Apr; 58(4):500-509. PubMed ID: 29206476 [TBL] [Abstract][Full Text] [Related]