BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28438487)

  • 21. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HIT'nDRIVE: patient-specific multidriver gene prioritization for precision oncology.
    Shrestha R; Hodzic E; Sauerwald T; Dao P; Wang K; Yeung J; Anderson S; Vandin F; Haffari G; Collins CC; Sahinalp SC
    Genome Res; 2017 Sep; 27(9):1573-1588. PubMed ID: 28768687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach.
    Zhang D; Chen P; Zheng CH; Xia J
    Oncotarget; 2016 Jan; 7(4):4298-309. PubMed ID: 26735889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FocalScan: Scanning for altered genes in cancer based on coordinated DNA and RNA change.
    Karlsson J; Larsson E
    Nucleic Acids Res; 2016 Nov; 44(19):e150. PubMed ID: 27474725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.
    Zhou Y; Liu Y; Li K; Zhang R; Qiu F; Zhao N; Xu Y
    PLoS One; 2015; 10(3):e0116095. PubMed ID: 25803614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.
    Wang K; Lim HY; Shi S; Lee J; Deng S; Xie T; Zhu Z; Wang Y; Pocalyko D; Yang WJ; Rejto PA; Mao M; Park CK; Xu J
    Hepatology; 2013 Aug; 58(2):706-17. PubMed ID: 23505090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Squalene epoxidase is a bona fide oncogene by amplification with clinical relevance in breast cancer.
    Brown DN; Caffa I; Cirmena G; Piras D; Garuti A; Gallo M; Alberti S; Nencioni A; Ballestrero A; Zoppoli G
    Sci Rep; 2016 Jan; 6():19435. PubMed ID: 26777065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined analysis of gene expression, DNA copy number, and mutation profiling data to display biological process anomalies in individual breast cancers.
    Shi W; Balazs B; Györffy B; Jiang T; Symmans WF; Hatzis C; Pusztai L
    Breast Cancer Res Treat; 2014 Apr; 144(3):561-8. PubMed ID: 24619174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying mutated driver pathways in cancer by integrating multi-omics data.
    Wu J; Cai Q; Wang J; Liao Y
    Comput Biol Chem; 2019 Jun; 80():159-167. PubMed ID: 30959272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FGMD: A novel approach for functional gene module detection in cancer.
    Jin D; Lee H
    PLoS One; 2017; 12(12):e0188900. PubMed ID: 29244808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two members of the TRiC chaperonin complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving oncogenes.
    Guest ST; Kratche ZR; Bollig-Fischer A; Haddad R; Ethier SP
    Exp Cell Res; 2015 Mar; 332(2):223-35. PubMed ID: 25704758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression.
    Roszik J; Wu CJ; Siroy AE; Lazar AJ; Davies MA; Woodman SE; Kwong LN
    Sci Rep; 2016 Jan; 6():19649. PubMed ID: 26787600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of genomic data enables selective discovery of breast cancer drivers.
    Sanchez-Garcia F; Villagrasa P; Matsui J; Kotliar D; Castro V; Akavia UD; Chen BJ; Saucedo-Cuevas L; Rodriguez Barrueco R; Llobet-Navas D; Silva JM; Pe'er D
    Cell; 2014 Dec; 159(6):1461-75. PubMed ID: 25433701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targets of genome copy number reduction in primary breast cancers identified by integrative genomics.
    Chen W; Salto-Tellez M; Palanisamy N; Ganesan K; Hou Q; Tan LK; Sii LH; Ito K; Tan B; Wu J; Tay A; Tan KC; Ang E; Tan BK; Tan PH; Ito Y; Tan P
    Genes Chromosomes Cancer; 2007 Mar; 46(3):288-301. PubMed ID: 17171680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying master regulators of cancer and their downstream targets by integrating genomic and epigenomic features.
    Gevaert O; Plevritis S
    Pac Symp Biocomput; 2013; ():123-34. PubMed ID: 23424118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The landscape of candidate driver genes differs between male and female breast cancer.
    Johansson I; Ringnér M; Hedenfalk I
    PLoS One; 2013; 8(10):e78299. PubMed ID: 24194916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.
    Verbeke LP; Van den Eynden J; Fierro AC; Demeester P; Fostier J; Marchal K
    PLoS One; 2015; 10(7):e0133503. PubMed ID: 26217958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.