These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 28438763)
21. Metabolic Flexibility in Response to Within-Season Temperature Variability in House Sparrows. Swanson DL; Agin TJ; Zhang Y; Oboikovitz P; DuBay S Integr Org Biol; 2020; 2(1):obaa039. PubMed ID: 33791577 [TBL] [Abstract][Full Text] [Related]
22. Migration-induced variation of fatty acid transporters and cellular metabolic intensity in passerine birds. Zhang Y; King MO; Harmon E; Eyster K; Swanson DL J Comp Physiol B; 2015 Oct; 185(7):797-810. PubMed ID: 26194862 [TBL] [Abstract][Full Text] [Related]
23. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds. Swanson DL; King MO; Culver W; Zhang Y Physiol Biochem Zool; 2017; 90(2):210-222. PubMed ID: 28277951 [TBL] [Abstract][Full Text] [Related]
24. Phenotype manipulations confirm the role of pectoral muscles and haematocrit in avian maximal thermogenic capacity. Petit M; Vézina F J Exp Biol; 2014 Mar; 217(Pt 6):824-30. PubMed ID: 24198261 [TBL] [Abstract][Full Text] [Related]
25. Evidence for a maintenance cost for birds maintaining highly flexible basal, but not summit, metabolic rates. Swanson DL; Stager M; Vézina F; Liu JS; McKechnie AE; Amirkhiz RG Sci Rep; 2023 Jun; 13(1):8968. PubMed ID: 37268715 [TBL] [Abstract][Full Text] [Related]
26. Intra-seasonal flexibility in avian metabolic performance highlights the uncoupling of basal metabolic rate and thermogenic capacity. Petit M; Lewden A; Vézina F PLoS One; 2013; 8(6):e68292. PubMed ID: 23840843 [TBL] [Abstract][Full Text] [Related]
27. Within-winter flexibility in muscle and heart lipid transport and catabolism in passerine birds. Swanson DL; King MO; Culver W; Zhang Y J Comp Physiol B; 2019 Aug; 189(3-4):451-462. PubMed ID: 31076837 [TBL] [Abstract][Full Text] [Related]
28. Consequences of being phenotypically mismatched with the environment: no evidence of oxidative stress in cold- and warm-acclimated birds facing a cold spell. Jimenez AG; Ruhs EC; Tobin KJ; Anderson KN; Le Pogam A; Regimbald L; Vézina F J Exp Biol; 2020 Apr; 223(Pt 8):. PubMed ID: 32165437 [TBL] [Abstract][Full Text] [Related]
29. How salinity and temperature combine to affect physiological state and performance in red knots with contrasting non-breeding environments. Gutiérrez JS; Soriano-Redondo A; Dekinga A; Villegas A; Masero JA; Piersma T Oecologia; 2015 Aug; 178(4):1077-91. PubMed ID: 25851406 [TBL] [Abstract][Full Text] [Related]
30. Seasonal adjustments in body mass and basal thermogenesis in Chinese hwameis (Garrulax canorus): the roles of temperature and photoperiod. Li C; Liu C; Hu P; Zheng X; Li M; Liu J J Exp Biol; 2022 Sep; 225(17):. PubMed ID: 36004672 [TBL] [Abstract][Full Text] [Related]
31. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. Williams JB; Tieleman BI J Exp Biol; 2000 Oct; 203(Pt 20):3153-9. PubMed ID: 11003826 [TBL] [Abstract][Full Text] [Related]
32. Phenotypic flexibility of traits related to energy acquisition in mice divergently selected for basal metabolic rate (BMR). Ksiazek A; Czerniecki J; Konarzewski M J Exp Biol; 2009 Mar; 212(Pt 6):808-14. PubMed ID: 19251997 [TBL] [Abstract][Full Text] [Related]
33. Substrate metabolism in seasonally acclimatized American goldfinches. Marsh RL; Dawson WR Am J Physiol; 1982 May; 242(5):R563-9. PubMed ID: 6211105 [TBL] [Abstract][Full Text] [Related]
34. Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice. Ksiazek A; Konarzewski M; Lapo IB Physiol Biochem Zool; 2004; 77(6):890-9. PubMed ID: 15674764 [TBL] [Abstract][Full Text] [Related]
35. Hormonal correlates and thermoregulatory consequences of molting on metabolic rate in a northerly wintering shorebird. Vézina F; Gustowska A; Jalvingh KM; Chastel O; Piersma T Physiol Biochem Zool; 2009; 82(2):129-42. PubMed ID: 19199554 [TBL] [Abstract][Full Text] [Related]
36. Phenotypic flexibility of metabolic rate and evaporative water loss does not vary across a climatic gradient in an Afrotropical passerine bird. Noakes MJ; McKechnie AE J Exp Biol; 2020 Apr; 223(Pt 7):. PubMed ID: 32165435 [TBL] [Abstract][Full Text] [Related]
37. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy. Swanson DL; Thomas NE; Liknes ET; Cooper SJ PLoS One; 2012; 7(3):e34271. PubMed ID: 22479584 [TBL] [Abstract][Full Text] [Related]
38. Relationship between n-3 PUFA content and energy metabolism in the flight muscles of a migrating shorebird: evidence for natural doping. Maillet D; Weber JM J Exp Biol; 2007 Feb; 210(Pt 3):413-20. PubMed ID: 17234610 [TBL] [Abstract][Full Text] [Related]
39. Seasonal metabolic adjustments in an avian evolutionary relict restricted to mountain habitat. Oswald KN; Lee ATK; Smit B J Therm Biol; 2021 Jan; 95():102815. PubMed ID: 33454043 [TBL] [Abstract][Full Text] [Related]
40. Coping with Salt Water Habitats: Metabolic and Oxidative Responses to Salt Intake in the Rufous-Collared Sparrow. Sabat P; Narváez C; Peña-Villalobos I; Contreras C; Maldonado K; Sanchez-Hernandez JC; Newsome SD; Nespolo R; Bozinovic F Front Physiol; 2017; 8():654. PubMed ID: 28919865 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]