These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 28438805)
41. Increased collagen within the transverse tubules in human heart failure. Crossman DJ; Shen X; Jüllig M; Munro M; Hou Y; Middleditch M; Shrestha D; Li A; Lal S; Dos Remedios CG; Baddeley D; Ruygrok PN; Soeller C Cardiovasc Res; 2017 Jul; 113(8):879-891. PubMed ID: 28444133 [TBL] [Abstract][Full Text] [Related]
43. Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes. Hatano A; Okada J; Hisada T; Sugiura S J Biomech; 2012 Mar; 45(5):815-23. PubMed ID: 22226404 [TBL] [Abstract][Full Text] [Related]
44. Cardiac Resynchronization Therapy Reduces Subcellular Heterogeneity of Ryanodine Receptors, T-Tubules, and Ca2+ Sparks Produced by Dyssynchronous Heart Failure. Li H; Lichter JG; Seidel T; Tomaselli GF; Bridge JH; Sachse FB Circ Heart Fail; 2015 Nov; 8(6):1105-14. PubMed ID: 26294422 [TBL] [Abstract][Full Text] [Related]
45. MG53 is dispensable for T-tubule maturation but critical for maintaining T-tubule integrity following cardiac stress. Zhang C; Chen B; Wang Y; Guo A; Tang Y; Khataei T; Shi Y; Kutschke WJ; Zimmerman K; Weiss RM; Liu J; Benson CJ; Hong J; Ma J; Song LS J Mol Cell Cardiol; 2017 Nov; 112():123-130. PubMed ID: 28822805 [TBL] [Abstract][Full Text] [Related]
46. Subcellular Remodeling of the T-Tubule Membrane System: The Limits of Myocardial Recovery Revealed? Rame JE; Lavandero S Circulation; 2017 Apr; 135(17):1646-1650. PubMed ID: 28438805 [No Abstract] [Full Text] [Related]
47. T-tubule remodeling in human hypertrophic cardiomyopathy. Vitale G; Coppini R; Tesi C; Poggesi C; Sacconi L; Ferrantini C J Muscle Res Cell Motil; 2021 Jun; 42(2):305-322. PubMed ID: 33222034 [TBL] [Abstract][Full Text] [Related]
48. BIN1 regulates dynamic t-tubule membrane. Fu Y; Hong T Biochim Biophys Acta; 2016 Jul; 1863(7 Pt B):1839-47. PubMed ID: 26578114 [TBL] [Abstract][Full Text] [Related]
49. The SLMAP/Striatin complex: An emerging regulator of normal and abnormal cardiac excitation-contraction coupling. Nader M Eur J Pharmacol; 2019 Sep; 858():172491. PubMed ID: 31233748 [TBL] [Abstract][Full Text] [Related]
50. New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling. Gambardella J; Trimarco B; Iaccarino G; Santulli G Adv Exp Med Biol; 2018; 1067():373-385. PubMed ID: 28956314 [TBL] [Abstract][Full Text] [Related]
51. Interplay of defective excitation-contraction coupling, energy starvation, and oxidative stress in heart failure. Kohlhaas M; Maack C Trends Cardiovasc Med; 2011 Apr; 21(3):69-73. PubMed ID: 22626245 [TBL] [Abstract][Full Text] [Related]
52. Subcellular remodeling as a viable target for the treatment of congestive heart failure. Dhalla NS; Dent MR; Tappia PS; Sethi R; Barta J; Goyal RK J Cardiovasc Pharmacol Ther; 2006 Mar; 11(1):31-45. PubMed ID: 16703218 [TBL] [Abstract][Full Text] [Related]
53. Clinical and Molecular Comparison of Pediatric and Adult Reverse Remodeling With Ventricular Assist Devices. Weia BC; Adachi I; Jacot JG Artif Organs; 2015 Aug; 39(8):691-700. PubMed ID: 25865791 [TBL] [Abstract][Full Text] [Related]