These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 2843883)

  • 1. Structural changes in Na, K-ATPase estimated by intrinsic and extrinsic fluorescence probes.
    Taniguchi K; Suzuki K; Sasaki T; Tosa H; Shinoguchi E
    Prog Clin Biol Res; 1988; 268A():369-76. PubMed ID: 2843883
    [No Abstract]   [Full Text] [Related]  

  • 2. Stopped-flow kinetic investigations of conformational changes of pig kidney Na+,K+-ATPase.
    Kane DJ; Fendler K; Grell E; Bamberg E; Taniguchi K; Froehlich JP; Clarke RJ
    Biochemistry; 1997 Oct; 36(43):13406-20. PubMed ID: 9341234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational change accompanying transition of ADP-sensitive phosphoenzyme to potassium-sensitive phosphoenzyme of (Na+,K+)-ATPase modified with N-[p-(2-benzimidazolyl)phenyl]maleimide.
    Taniguchi K; Suzuki K; Iida S
    J Biol Chem; 1982 Sep; 257(18):10659-67. PubMed ID: 6286667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E2P phosphoforms of Na,K-ATPase. II. Interaction of substrate and cation-binding sites in Pi phosphorylation of Na,K-ATPase.
    Cornelius F; Fedosova NU; Klodos I
    Biochemistry; 1998 Nov; 37(47):16686-96. PubMed ID: 9843437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overview: the phosphointermediates of Na,K-ATPase.
    Nørby JG; Klodos I
    Prog Clin Biol Res; 1988; 268A():249-70. PubMed ID: 2843867
    [No Abstract]   [Full Text] [Related]  

  • 6. Dephosphorylation schemes for the Na,K-ATPase reconsidered in light of allosteric sites for Na.
    Robinson JD
    Prog Clin Biol Res; 1988; 268A():341-7. PubMed ID: 2843879
    [No Abstract]   [Full Text] [Related]  

  • 7. Quenching of the tryptophan fluorescence of Na,K-ATPase with acrylamide.
    Tyson PA; Steinberg M
    Prog Clin Biol Res; 1988; 268A():377-82. PubMed ID: 2843884
    [No Abstract]   [Full Text] [Related]  

  • 8. Changes in fluorescence energy transfer between sulfhydryl fluorescent residues during ouabain sensitive Na+,K+-ATP hydrolysis.
    Sakuraya M; Taniguchi K; Suzuki K; Kudo A; Nakamura S; Iida S
    Jpn J Pharmacol; 1987 Jul; 44(3):311-21. PubMed ID: 2821309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The changes in conformation of (Na+ K+)-ATPase from rat brain membranes are accompanied by changes of protein segment movements in the nanosecond range.
    Amler E; Teisinger J; Svoboda P; Vyskocil F
    Physiol Bohemoslov; 1988; 37(2):145-8. PubMed ID: 2850590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the distance change between cysteine-457 and the nucleotide binding site when sodium pump changes conformation from E1 to E2 by fluorescence energy transfer measurements.
    Lin SH; Faller LD
    Biochemistry; 1996 Jun; 35(25):8419-28. PubMed ID: 8679600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Na,K-ATPase specifically modified on the anti-fluorescein antibody-inaccessible site by fluorescein 5'-isothiocyanate.
    Lin SH; Faller LD
    Anal Biochem; 2000 Dec; 287(2):303-12. PubMed ID: 11112278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leucine 332 at the boundary between the fourth transmembrane segment and the cytoplasmic domain of Na+,K+-ATPase plays a pivotal role in the ion translocating conformational changes.
    Vilsen B
    Biochemistry; 1997 Oct; 36(43):13312-24. PubMed ID: 9341223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a model cardiac glycoside receptor: comparisons with Na+,K+-ATPase.
    Kasturi R; Yuan J; McLean LR; Margolies MN; Ball WJ
    Biochemistry; 1998 May; 37(19):6658-66. PubMed ID: 9578549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for tryptophan residues in the cation transport path of the Na(+),K(+)-ATPase.
    Yudowski GA; Bar Shimon M; Tal DM; González-Lebrero RM; Rossi RC; Garrahan PJ; Beaugé LA; Karlish SJ
    Biochemistry; 2003 Sep; 42(34):10212-22. PubMed ID: 12939149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction of purified (Na,K)-ATPase with the fluorescent sulfhydryl probe 2-(4'-maleimidylanilino)naphthalene 6-sulfonic acid. Characterization and the effects of ligands.
    Gupte SS; Lane LK
    J Biol Chem; 1979 Oct; 254(20):10362-9. PubMed ID: 226540
    [No Abstract]   [Full Text] [Related]  

  • 16. Identification of potential regulatory sites of the Na+,K+-ATPase by kinetic analysis.
    Kong BY; Clarke RJ
    Biochemistry; 2004 Mar; 43(8):2241-50. PubMed ID: 14979720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between cardiac glycosides and sodium/potassium-ATPase: three-dimensional structure-activity relationship models for ligand binding to the E2-Pi form of the enzyme versus activity inhibition.
    Paula S; Tabet MR; Ball WJ
    Biochemistry; 2005 Jan; 44(2):498-510. PubMed ID: 15641774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes in the alpha-subunit, and cation transport by Na+, K+-ATPase.
    Jørgensen PL
    Ciba Found Symp; 1983; 95():253-72. PubMed ID: 6303721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorpromazine binding to Na+, K+-ATPase and photolabeling: involvement of the ouabain site monitored by fluorescence.
    Guevara EA; de Lourdes Barriviera M; Hassón-Voloch A; Louro SR
    Photochem Photobiol; 2007; 83(4):914-9. PubMed ID: 17645663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxy-terminal regions of the sarcoplasmic/endoplasmic reticulum Ca(2+)- and the Na+/K(+)-ATPases control their K+ sensitivity.
    Ishii T; Hata F; Lemas MV; Fambrough DM; Takeyasu K
    Biochemistry; 1997 Jan; 36(2):442-51. PubMed ID: 9003197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.