These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 28438969)

  • 41. A visual thalamocortical slice.
    MacLean JN; Fenstermaker V; Watson BO; Yuste R
    Nat Methods; 2006 Feb; 3(2):129-34. PubMed ID: 16432523
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Time course of inhibition induced by a putative saccadic suppression circuit in the dorsal lateral geniculate nucleus of the rabbit.
    Zhu JJ; Lo FS
    Brain Res Bull; 1996; 41(5):281-91. PubMed ID: 8924039
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thalamocortical specificity and the synthesis of sensory cortical receptive fields.
    Alonso JM; Swadlow HA
    J Neurophysiol; 2005 Jul; 94(1):26-32. PubMed ID: 15985693
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex.
    Li YT; Liu BH; Chou XL; Zhang LI; Tao HW
    J Neurosci; 2015 Aug; 35(31):11081-93. PubMed ID: 26245969
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex.
    Anderson JS; Carandini M; Ferster D
    J Neurophysiol; 2000 Aug; 84(2):909-26. PubMed ID: 10938316
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex.
    Ferster D
    J Neurosci; 1986 May; 6(5):1284-301. PubMed ID: 3711980
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning.
    Krukowski AE; Miller KD
    Nat Neurosci; 2001 Apr; 4(4):424-30. PubMed ID: 11276234
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adult thalamocortical transmission involves both NMDA and non-NMDA receptors.
    Gil Z; Amitai Y
    J Neurophysiol; 1996 Oct; 76(4):2547-54. PubMed ID: 8899626
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activation of a Visual Cortical Column by a Directionally Selective Thalamocortical Neuron.
    Bereshpolova Y; Stoelzel CR; Su C; Alonso JM; Swadlow HA
    Cell Rep; 2019 Jun; 27(13):3733-3740.e3. PubMed ID: 31242407
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Very slow brain potential fluctuations (< 0.5 Hz) in visual thalamus and striate cortex after their successive electrical stimulation in lightly anesthetized rats.
    Filippov IV
    Brain Res; 2005 Dec; 1066(1-2):179-86. PubMed ID: 16324687
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Different balance of excitation and inhibition in forward and feedback circuits of rat visual cortex.
    Shao Z; Burkhalter A
    J Neurosci; 1996 Nov; 16(22):7353-65. PubMed ID: 8929442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relationship between the Dynamics of Orientation Tuning and Spatiotemporal Receptive Field Structures of Cat LGN Neurons.
    Li H; Fang Q; Ge Y; Li Z; Meng J; Zhu J; Yu H
    Neuroscience; 2018 May; 377():26-39. PubMed ID: 29481999
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Primary visual cortex shows laminar-specific and balanced circuit organization of excitatory and inhibitory synaptic connectivity.
    Xu X; Olivas ND; Ikrar T; Peng T; Holmes TC; Nie Q; Shi Y
    J Physiol; 2016 Apr; 594(7):1891-910. PubMed ID: 26844927
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two classes of excitatory synaptic responses in rat thalamic reticular neurons.
    Deleuze C; Huguenard JR
    J Neurophysiol; 2016 Sep; 116(3):995-1011. PubMed ID: 27281752
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensory experience inversely regulates feedforward and feedback excitation-inhibition ratio in rodent visual cortex.
    Miska NJ; Richter LM; Cary BA; Gjorgjieva J; Turrigiano GG
    Elife; 2018 Oct; 7():. PubMed ID: 30311905
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding layer 4 of the cortical circuit: a model based on cat V1.
    Miller KD
    Cereb Cortex; 2003 Jan; 13(1):73-82. PubMed ID: 12466218
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices.
    Petrus E; Rodriguez G; Patterson R; Connor B; Kanold PO; Lee HK
    J Neurosci; 2015 Jun; 35(23):8790-801. PubMed ID: 26063913
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine.
    Kuo MC; Rasmusson DD; Dringenberg HC
    Neuroscience; 2009 Sep; 163(1):430-41. PubMed ID: 19531370
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synaptic circuit organization of motor corticothalamic neurons.
    Yamawaki N; Shepherd GM
    J Neurosci; 2015 Feb; 35(5):2293-307. PubMed ID: 25653383
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat.
    Dubin MW; Cleland BG
    J Neurophysiol; 1977 Mar; 40(2):410-27. PubMed ID: 191574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.