BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 28438980)

  • 1. Host and Bacterial Factors Control Susceptibility of Drosophila melanogaster to Coxiella burnetii Infection.
    Bastos RG; Howard ZP; Hiroyasu A; Goodman AG
    Infect Immun; 2017 Jul; 85(7):. PubMed ID: 28438980
    [No Abstract]   [Full Text] [Related]  

  • 2. Coxiella burnetii Inhibits Neutrophil Apoptosis by Exploiting Survival Pathways and Antiapoptotic Protein Mcl-1.
    Cherla R; Zhang Y; Ledbetter L; Zhang G
    Infect Immun; 2018 Apr; 86(4):. PubMed ID: 29311244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coxiella burnetii as a useful tool to investigate bacteria-friendly host cell compartments.
    Pechstein J; Schulze-Luehrmann J; Lührmann A
    Int J Med Microbiol; 2018 Jan; 308(1):77-83. PubMed ID: 28935173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii.
    Kohler LJ; Roy CR
    Microbes Infect; 2015; 17(11-12):766-71. PubMed ID: 26327296
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Mahapatra S; Gallaher B; Smith SC; Graham JG; Voth DE; Shaw EI
    Front Cell Infect Microbiol; 2016; 6():188. PubMed ID: 28066723
    [No Abstract]   [Full Text] [Related]  

  • 6. MyD88 Is Required for Efficient Control of
    Kohl L; Hayek I; Daniel C; Schulze-Lührmann J; Bodendorfer B; Lührmann A; Lang R
    Front Immunol; 2019; 10():165. PubMed ID: 30800124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Both Major Histocompatibility Complex Class I (MHC-I) and MHC-II Molecules Are Required, while MHC-I Appears To Play a Critical Role in Host Defense against Primary Coxiella burnetii Infection.
    Buttrum L; Ledbetter L; Cherla R; Zhang Y; Mitchell WJ; Zhang G
    Infect Immun; 2018 Apr; 86(4):. PubMed ID: 29311245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural genetic variation in Drosophila melanogaster reveals genes associated with Coxiella burnetii infection.
    Guzman RM; Howard ZP; Liu Z; Oliveira RD; Massa AT; Omsland A; White SN; Goodman AG
    Genetics; 2021 Mar; 217(3):. PubMed ID: 33789347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuated Coxiella burnetii phase II causes a febrile response in gamma interferon knockout and Toll-like receptor 2 knockout mice and protects against reinfection.
    Ochoa-Repáraz J; Sentissi J; Trunkle T; Riccardi C; Pascual DW
    Infect Immun; 2007 Dec; 75(12):5845-58. PubMed ID: 17893129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening.
    McDonough JA; Newton HJ; Klum S; Swiss R; Agaisse H; Roy CR
    mBio; 2013 Jan; 4(1):e00606-12. PubMed ID: 23362322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Coxiella Burnetii type IVB secretion system (T4BSS) component DotA is released/secreted during infection of host cells and during in vitro growth in a T4BSS-dependent manner.
    Luedtke BE; Mahapatra S; Lutter EI; Shaw EI
    Pathog Dis; 2017 Jun; 75(4):. PubMed ID: 28449081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galleria mellonella as an alternative model of Coxiella burnetii infection.
    Norville IH; Hartley MG; Martinez E; Cantet F; Bonazzi M; Atkins TP
    Microbiology (Reading); 2014 Jun; 160(Pt 6):1175-1181. PubMed ID: 24677067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysosomal trafficking regulator restricts intracellular growth of
    Wan W; Zhang S; Zhao M; OuYang X; Yu Y; Xiong X; Zhao N; Jiao J
    Front Cell Infect Microbiol; 2023; 13():1336600. PubMed ID: 38282619
    [No Abstract]   [Full Text] [Related]  

  • 14. Primary Role for Toll-Like Receptor-Driven Tumor Necrosis Factor Rather than Cytosolic Immune Detection in Restricting Coxiella burnetii Phase II Replication within Mouse Macrophages.
    Bradley WP; Boyer MA; Nguyen HT; Birdwell LD; Yu J; Ribeiro JM; Weiss SR; Zamboni DS; Roy CR; Shin S
    Infect Immun; 2016 Apr; 84(4):998-1015. PubMed ID: 26787725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beginning to Understand the Role of the Type IV Secretion System Effector Proteins in Coxiella burnetii Pathogenesis.
    Lührmann A; Newton HJ; Bonazzi M
    Curr Top Microbiol Immunol; 2017; 413():243-268. PubMed ID: 29536362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The
    Pechstein J; Schulze-Luehrmann J; Bisle S; Cantet F; Beare PA; Ölke M; Bonazzi M; Berens C; Lührmann A
    Front Cell Infect Microbiol; 2020; 10():559915. PubMed ID: 33282747
    [No Abstract]   [Full Text] [Related]  

  • 17. Primary Murine Macrophages as a Tool for Virulence Factor Discovery in Coxiella burnetii.
    Case EDR; Mahapatra S; Hoffpauir CT; Konganti K; Hillhouse AE; Samuel JE; Van Schaik EJ
    Microbiol Spectr; 2022 Aug; 10(4):e0248421. PubMed ID: 35913176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Coxiella burnetii T4SS effector protein AnkG hijacks the 7SK small nuclear ribonucleoprotein complex for reprogramming host cell transcription.
    Cordsmeier A; Rinkel S; Jeninga M; Schulze-Luehrmann J; Ölke M; Schmid B; Hasler D; Meister G; Häcker G; Petter M; Beare PA; Lührmann A
    PLoS Pathog; 2022 Feb; 18(2):e1010266. PubMed ID: 35134097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection.
    Weber MM; Faris R; van Schaik EJ; McLachlan JT; Wright WU; Tellez A; Roman VA; Rowin K; Case ED; Luo ZQ; Samuel JE
    Infect Immun; 2016 Sep; 84(9):2524-33. PubMed ID: 27324482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring pH of the Coxiella burnetii Parasitophorous Vacuole.
    Samanta D; Gilk SD
    Curr Protoc Microbiol; 2017 Nov; 47():6C.3.1-6C.3.11. PubMed ID: 29120485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.