These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 284390)

  • 1. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions.
    Lichtshtein D; Kaback HR; Blume AJ
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):650-4. PubMed ID: 284390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of monensin-induced hyperpolarization of neuroblastoma-glioma hybrid NG108-15.
    Lichtshtein D; Dunlop K; Kaback HR; Blume AJ
    Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2580-4. PubMed ID: 288048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a lipophilic cation to monitor electrical membrane potential in the intact rat lens.
    Cheng Q; Lichtstein D; Russell P; Zigler JS
    Invest Ophthalmol Vis Sci; 2000 Feb; 41(2):482-7. PubMed ID: 10670479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperpolarization of neuroblastoma-glioma hybrid NG108-15 by vanadium ions.
    Lichtstein D; Mullikin-Kilpatrick D; Blume AJ
    Proc Natl Acad Sci U S A; 1982 Jul; 79(13):4202-6. PubMed ID: 6955796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting membrane potential in 41A3 mouse neuroblastoma cells. Effect of increased glucose and galactose concentrations.
    Yorek MA; Dunlap JA
    Biochim Biophys Acta; 1991 Jan; 1061(1):1-8. PubMed ID: 1847297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of tetanus toxin on the accumulation of the permeant lipophilic cation tetraphenylphosphonium by guinea pig brain synaptosomes.
    Ramos S; Grollman EF; Lazo PS; Dyer SA; Habig WH; Hardegree MC; Kaback HR; Kohn LD
    Proc Natl Acad Sci U S A; 1979 Oct; 76(10):4783-7. PubMed ID: 291898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane potential of olfactory bulb synaptosomal fractions: characterization with the lipophilic cation tetraphenylphosphonium.
    Rochel S; Lichtstein D; Blume AJ; Margolis FL
    J Neurosci; 1981 Oct; 1(10):1180-92. PubMed ID: 6116747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of a H+ pump in determining the resting potential of neuroblastoma cells.
    Gérard V; Rouzaire-Dubois B; Dubois JM
    J Membr Biol; 1994 Jan; 137(2):119-25. PubMed ID: 8006950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport pathways for lithium ions in neuroblastoma x glioma hybrid cells at 'therapeutic' concentrations of Li+.
    Reiser G; Duhm J
    Brain Res; 1982 Dec; 252(2):247-58. PubMed ID: 7150952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-channels in non-excitable glioma cells, shown by the influence of veratridine, scorpion toxin, and tetrodotoxin on membrane potential and on ion transport.
    Reiser G; Hamprecht B
    Pflugers Arch; 1983 Jun; 397(4):260-4. PubMed ID: 6310481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane potential and sodium flux in neuroblastoma X glioma hybrid cells: effects of amiloride and serum.
    O'Donnell ME; Villereal ML
    J Cell Physiol; 1982 Dec; 113(3):405-12. PubMed ID: 7174741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bradykinin induces hyperpolarizations in rat glioma cells and in neuroblastoma X glioma hybrid cells.
    Reiser G; Hamprecht B
    Brain Res; 1982 May; 239(1):191-9. PubMed ID: 7093675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased accumulation of the lipophilic cation tetraphenylphosphonium+ by cyclopiazonic acid-treated renal epithelial cells.
    Riley RT; Norred WP; Dorner JW; Cole RJ
    J Toxicol Environ Health; 1985; 15(6):779-88. PubMed ID: 4057282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of plasma membrane potential in isolated rat hepatocytes using the lipophilic cation, tetraphenylphosphonium: correction of probe intracellular binding and mitochondrial accumulation.
    Saito S; Murakami Y; Miyauchi S; Kamo N
    Biochim Biophys Acta; 1992 Nov; 1111(2):221-30. PubMed ID: 1329961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of medium amino acids on ouabain-sensitive 86Rb+ -uptake and membrane-potential dependent [3H]tetraphenylphosphonium accumulation in Friend erythroleukemia cells.
    Schaefer A; Munter KH; Rüller S
    Eur J Cell Biol; 1988 Aug; 46(3):453-7. PubMed ID: 3181165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade by neurotransmitter antagonists of veratridine-activated ion channels in neuronal cell lines.
    Reiser G; Günther A; Hamprecht B
    J Neurochem; 1983 Feb; 40(2):493-502. PubMed ID: 6130127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential: identification of an amiloride binding site on the putrescine carrier.
    Poulin R; Zhao C; Verma S; Charest-Gaudreault R; Audette M
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1283-91. PubMed ID: 9494098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Action of tetanus toxin on cholinergic neuroblastoma X glioma hybrid cells: selective blockade of Ca spikes.
    Sugimoto N; Ozutsumi K; Matsuda M; Higashida H; Miki N
    Biken J; 1983 Dec; 26(4):145-54. PubMed ID: 6378174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of [3H]triphenylmethylphosphonium cation for estimating membrane potential in neuroblastoma cells.
    Milligan G; Strange PG
    J Neurochem; 1984 Dec; 43(6):1515-21. PubMed ID: 6491666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.