BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28439013)

  • 21. Concurrent Activation of Kras and Canonical Wnt Signaling Induces Premalignant Lesions That Progress to Extrahepatic Biliary Cancer in Mice.
    Nagao M; Fukuda A; Omatsu M; Namikawa M; Sono M; Fukunaga Y; Masuda T; Araki O; Yoshikawa T; Ogawa S; Masuo K; Goto N; Hiramatsu Y; Muta Y; Tsuda M; Maruno T; Nakanishi Y; Taketo MM; Ferrer J; Tsuruyama T; Nakanuma Y; Taura K; Uemoto S; Seno H
    Cancer Res; 2022 May; 82(9):1803-1817. PubMed ID: 35247892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. p53 protects against formation of extrahepatic biliary precancerous lesions in the context of oncogenic Kras.
    Nagao M; Mizukoshi K; Nakayama S; Namikawa M; Hiramatsu Y; Maruno T; Nakanishi Y; Tsuruyama T; Fukuda A; Seno H
    Oncotarget; 2023 Mar; 14():276-279. PubMed ID: 36999984
    [No Abstract]   [Full Text] [Related]  

  • 23. A Mouse Model of Cholangiocarcinoma Uncovers a Role for Tensin-4 in Tumor Progression.
    Di-Luoffo M; Pirenne S; Saandi T; Loriot A; Gérard C; Dauguet N; Manzano-Núñez F; Alves Souza Carvalhais N; Lamoline F; Cordi S; Konobrocka K; De Greef V; Komuta M; Halder G; Jacquemin P; Lemaigre FP
    Hepatology; 2021 Sep; 74(3):1445-1460. PubMed ID: 33768568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New concept: cellular senescence in pathophysiology of cholangiocarcinoma.
    Sasaki M; Nakanuma Y
    Expert Rev Gastroenterol Hepatol; 2016; 10(5):625-38. PubMed ID: 26680649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.
    Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH
    Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Keratin 19-expressing hepatocellular carcinoma and small-duct type intrahepatic cholangiocarcinoma show a similar postoperative clinical course but have distinct genetic features.
    Akita M; Ajiki T; Fukumoto T; Itoh T; Zen Y
    Histopathology; 2019 Sep; 75(3):385-393. PubMed ID: 31017316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative analysis of VEGF-C mRNA of extrahepatic cholangiocarcinoma with real-time PCR using samples obtained during endoscopic retrograde cholangiopancreatography.
    Dobashi A; Imazu H; Tatsumi N; Okabe M; Ang TL; Tajiri H
    Scand J Gastroenterol; 2013 Jul; 48(7):848-55. PubMed ID: 23721191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concerted loss of TGFβ-mediated proliferation control and E-cadherin disrupts epithelial homeostasis and causes oral squamous cell carcinoma.
    Andl T; Le Bras GF; Richards NF; Allison GL; Loomans HA; Washington MK; Revetta F; Lee RK; Taylor C; Moses HL; Andl CD
    Carcinogenesis; 2014 Nov; 35(11):2602-10. PubMed ID: 25233932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clonorchis sinensis excretory-secretory products increase malignant characteristics of cholangiocarcinoma cells in three-dimensional co-culture with biliary ductal plates.
    Won J; Cho Y; Lee D; Jeon BY; Ju JW; Chung S; Pak JH
    PLoS Pathog; 2019 May; 15(5):e1007818. PubMed ID: 31121000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutant p53 Together with TGFβ Signaling Influence Organ-Specific Hematogenous Colonization Patterns of Pancreatic Cancer.
    Zhong Y; Macgregor-Das A; Saunders T; Whittle MC; Makohon-Moore A; Kohutek ZA; Poling J; Herbst BT; Javier BM; Cope L; Leach SD; Hingorani SR; Iacobuzio-Donahue CA
    Clin Cancer Res; 2017 Mar; 23(6):1607-1620. PubMed ID: 27637888
    [No Abstract]   [Full Text] [Related]  

  • 31. Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress.
    Sakitani K; Hirata Y; Hikiba Y; Hayakawa Y; Ihara S; Suzuki H; Suzuki N; Serizawa T; Kinoshita H; Sakamoto K; Nakagawa H; Tateishi K; Maeda S; Ikenoue T; Kawazu S; Koike K
    BMC Cancer; 2015 Oct; 15():795. PubMed ID: 26496833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation between KRAS gene mutations and linicopathological features of patients with intrahepatic cholangiocarcinoma.
    Wang J; Xu MX; Wang LQ; Li HY; Wang ZL; Li LJ
    J Biol Regul Homeost Agents; 2019; 33(5):1551-1557. PubMed ID: 31635679
    [No Abstract]   [Full Text] [Related]  

  • 33. MDM2 Amplification in Intrahepatic Cholangiocarcinomas: Its Relationship With Large-Duct Type Morphology and Uncommon KRAS Mutations.
    Kim SJ; Akita M; Sung YN; Fujikura K; Lee JH; Hwang S; Yu E; Otani K; Hong SM; Zen Y
    Am J Surg Pathol; 2018 Apr; 42(4):512-521. PubMed ID: 29309301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Expression and significance of aPKC-iota and E-cadherin in cholangiocarcinoma].
    Li Q; Wang JM; Liu C; Xiao BL; Su Y; Zou SQ
    Ai Zheng; 2007 Jul; 26(7):715-8. PubMed ID: 17626746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous activation of Kras-Akt and Notch pathways induces extrahepatic biliary cancer via the mTORC1 pathway.
    Namikawa M; Fukuda A; Mizukoshi K; Iwane K; Kawai M; Yamakawa G; Omatsu M; Sono M; Masuda T; Araki O; Nagao M; Yoshikawa T; Ogawa S; Hiramatsu Y; Muta Y; Tsuda M; Maruno T; Nakanishi Y; Tsuruyama T; Taura K; Hatano E; Seno H
    J Pathol; 2023 Aug; 260(4):478-492. PubMed ID: 37310065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of Peribiliary Gland-Constituting Cells Based on Differential Expression of Trophoblast Cell Surface Protein 2 in Biliary Tract.
    Matsui S; Harada K; Miyata N; Okochi H; Miyajima A; Tanaka M
    Am J Pathol; 2018 Sep; 188(9):2059-2073. PubMed ID: 30126547
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Matsumori T; Kodama Y; Takai A; Shiokawa M; Nishikawa Y; Matsumoto T; Takeda H; Marui S; Okada H; Hirano T; Kuwada T; Sogabe Y; Kakiuchi N; Tomono T; Mima A; Morita T; Ueda T; Tsuda M; Yamauchi Y; Kuriyama K; Sakuma Y; Ota Y; Maruno T; Uza N; Marusawa H; Kageyama R; Chiba T; Seno H
    Cancer Res; 2020 Dec; 80(23):5305-5316. PubMed ID: 33067264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arid1a mutation suppresses TGF-β signaling and induces cholangiocarcinoma.
    Guo B; Friedland SC; Alexander W; Myers JA; Wang W; O'Dell MR; Getman M; Whitney-Miller CL; Agostini-Vulaj D; Huber AR; Mello SS; Vertino PM; Land HK; Steiner LA; Hezel AF
    Cell Rep; 2022 Aug; 40(9):111253. PubMed ID: 36044839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bile duct expression of pancreatic and duodenal homeobox 1 in perihilar cholangiocarcinogenesis.
    Igarashi S; Matsubara T; Harada K; Ikeda H; Sato Y; Sasaki M; Matsui O; Nakanuma Y
    Histopathology; 2012 Aug; 61(2):266-76. PubMed ID: 22594685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interleukin-6, hepatocyte growth factor, and their receptors in biliary epithelial cells during a type I ductular reaction in mice: interactions between the periductal inflammatory and stromal cells and the biliary epithelium.
    Liu Z; Sakamoto T; Ezure T; Yokomuro S; Murase N; Michalopoulos G; Demetris AJ
    Hepatology; 1998 Nov; 28(5):1260-8. PubMed ID: 9794910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.