These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28439240)

  • 1. Apolipophorin-III Acts as a Positive Regulator of
    Dhawan R; Gupta K; Kajla M; Kakani P; Choudhury TP; Kumar S; Kumar V; Gupta L
    Front Physiol; 2017; 8():185. PubMed ID: 28439240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apolipophorin-III mediates antiplasmodial epithelial responses in Anopheles gambiae (G3) mosquitoes.
    Gupta L; Noh JY; Jo YH; Oh SH; Kumar S; Noh MY; Lee YS; Cha SJ; Seo SJ; Kim I; Han YS; Barillas-Mury C
    PLoS One; 2010 Nov; 5(11):e15410. PubMed ID: 21072214
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Kajla M; Kakani P; Choudhury TP; Kumar V; Gupta K; Dhawan R; Gupta L; Kumar S
    Front Immunol; 2017; 8():249. PubMed ID: 28352267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic organization, sequence characterization and expression analysis of Tenebrio molitor apolipophorin-III in response to an intracellular pathogen, Listeria monocytogenes.
    Noh JY; Patnaik BB; Tindwa H; Seo GW; Kim DH; Patnaik HH; Jo YH; Lee YS; Lee BL; Kim NJ; Han YS
    Gene; 2014 Jan; 534(2):204-17. PubMed ID: 24200961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization and gene expression of apolipophorin III from the ghost moth, Thitarodes pui (Lepidoptera, Hepialidae).
    Sun Z; Yu J; Wu W; Zhang G
    Arch Insect Biochem Physiol; 2012 Jun; 80(1):1-14. PubMed ID: 22128070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide.
    Luckhart S; Vodovotz Y; Cui L; Rosenberg R
    Proc Natl Acad Sci U S A; 1998 May; 95(10):5700-5. PubMed ID: 9576947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of an Apolipophorin-III gene from the Chinese oak silkworm, Antheraea pernyi (Lepidoptera: Saturniidae).
    Liu QN; Lin KZ; Yang LN; Dai LS; Wang L; Sun Y; Qian C; Wei GQ; Liu DR; Zhu BJ; Liu CL
    Arch Insect Biochem Physiol; 2015 Mar; 88(3):155-67. PubMed ID: 25348706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti.
    Alavi Y; Arai M; Mendoza J; Tufet-Bayona M; Sinha R; Fowler K; Billker O; Franke-Fayard B; Janse CJ; Waters A; Sinden RE
    Int J Parasitol; 2003 Aug; 33(9):933-43. PubMed ID: 12906877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of midgut microbiota in Anopheles stephensi on Plasmodium berghei infections.
    Kalappa DM; Subramani PA; Basavanna SK; Ghosh SK; Sundaramurthy V; Uragayala S; Tiwari S; Anvikar AR; Valecha N
    Malar J; 2018 Oct; 17(1):385. PubMed ID: 30359252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium berghei ookinetes.
    Borhani Dizaji N; Basseri HR; Naddaf SR; Heidari M
    Gene; 2014 Oct; 550(2):245-52. PubMed ID: 25150160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of a prophenoloxidase cDNA from the malaria mosquito Anopheles stephensi.
    Cui L; Luckhart S; Rosenberg R
    Insect Mol Biol; 2000 Apr; 9(2):127-37. PubMed ID: 10762420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of Age on the Susceptibility of Anopheles stephensi to Plasmodium berghei Infection].
    Song XM; Wang JW
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2016 Dec; 34(6):508-12. PubMed ID: 30141604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on localization and protein ligands of Galleria mellonella apolipophorin III during immune response against different pathogens.
    Stączek S; Zdybicka-Barabas A; Mak P; Sowa-Jasiłek A; Kedracka-Krok S; Jankowska U; Suder P; Wydrych J; Grygorczuk K; Jakubowicz T; Cytryńska M
    J Insect Physiol; 2018; 105():18-27. PubMed ID: 29289504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmodium berghei ookinetes induce nitric oxide production in Anopheles pseudopunctipennis midguts cultured in vitro.
    Herrera-Ortíz A; Lanz-Mendoza H; Martínez-Barnetche J; Hernández-Martínez S; Villarreal-Treviño C; Aguilar-Marcelino L; Rodríguez MH
    Insect Biochem Mol Biol; 2004 Sep; 34(9):893-901. PubMed ID: 15350609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Maternally Inheritable
    Joshi D; Pan X; McFadden MJ; Bevins D; Liang X; Lu P; Thiem S; Xi Z
    Front Microbiol; 2017; 8():366. PubMed ID: 28337184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Late-phase immune responses limiting oocyst survival are independent of TEP1 function yet display strain specific differences in Anopheles gambiae.
    Kwon H; Arends BR; Smith RC
    Parasit Vectors; 2017 Aug; 10(1):369. PubMed ID: 28764765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of nitric oxide synthase in Anopheles stephensi by Plasmodium falciparum: mechanism of signaling and the role of parasite glycosylphosphatidylinositols.
    Lim J; Gowda DC; Krishnegowda G; Luckhart S
    Infect Immun; 2005 May; 73(5):2778-89. PubMed ID: 15845481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anopheles stephensi Dual Oxidase Silencing Activates the Thioester-Containing Protein 1 Pathway to Suppress Plasmodium Development.
    Kakani P; Kajla M; Choudhury TP; Gupta L; Kumar S
    J Innate Immun; 2019; 11(6):496-505. PubMed ID: 30928970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different forms of apolipophorin III in Galleria mellonella larvae challenged with bacteria and fungi.
    Zdybicka-Barabas A; Sowa-Jasiłek A; Stączek S; Jakubowicz T; Cytryńska M
    Peptides; 2015 Jun; 68():105-12. PubMed ID: 25579437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of blood feeding and exogenous supply of tryptophan on the quantities of xanthurenic acid in the salivary glands of Anopheles stephensi (Diptera: Culicidae).
    Okech B; Arai M; Matsuoka H
    Biochem Biophys Res Commun; 2006 Mar; 341(4):1113-8. PubMed ID: 16469295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.