BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 28439620)

  • 1. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy.
    Oßmann BE; Sarau G; Schmitt SW; Holtmannspötter H; Christiansen SH; Dicke W
    Anal Bioanal Chem; 2017 Jun; 409(16):4099-4109. PubMed ID: 28439620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection.
    Rule Wigginton K; Vikesland PJ
    Analyst; 2010 Jun; 135(6):1320-6. PubMed ID: 20498881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water.
    Schymanski D; Goldbeck C; Humpf HU; Fürst P
    Water Res; 2018 Feb; 129():154-162. PubMed ID: 29145085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of existing methods to extract microplastics from bivalve tissue: Adapted KOH digestion protocol improves filtration at single-digit pore size.
    Thiele CJ; Hudson MD; Russell AE
    Mar Pollut Bull; 2019 May; 142():384-393. PubMed ID: 31232316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-sized microplastics and pigmented particles in bottled mineral water.
    Oßmann BE; Sarau G; Holtmannspötter H; Pischetsrieder M; Christiansen SH; Dicke W
    Water Res; 2018 Sep; 141():307-316. PubMed ID: 29803096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(-1) for FTIR transmission measurements.
    Käppler A; Windrich F; Löder MG; Malanin M; Fischer D; Labrenz M; Eichhorn KJ; Voit B
    Anal Bioanal Chem; 2015 Sep; 407(22):6791-801. PubMed ID: 26123441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microplastic quantification affected by structure and pore size of filters.
    Cai H; Chen M; Chen Q; Du F; Liu J; Shi H
    Chemosphere; 2020 Oct; 257():127198. PubMed ID: 32512329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef.
    Cho IH; Bhandari P; Patel P; Irudayaraj J
    Biosens Bioelectron; 2015 Feb; 64():171-6. PubMed ID: 25216452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a confocal micro-Raman spectroscopy system and research on microplastics detection.
    Lu J; Xue Q; Bai H; Wang N
    Appl Opt; 2021 Sep; 60(27):8375-8383. PubMed ID: 34612936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter.
    L F; I PP; J M; P S; C L; A H; E R
    Mar Pollut Bull; 2016 Dec; 113(1-2):461-468. PubMed ID: 27837909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Anthropogenic Particles in Fish Stomachs: An Isolation Method Adapted to Identification by Raman Spectroscopy.
    Collard F; Gilbert B; Eppe G; Parmentier E; Das K
    Arch Environ Contam Toxicol; 2015 Oct; 69(3):331-9. PubMed ID: 26289815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics.
    Chen J; Feng S; Gao F; Grant E; Xu J; Wang S; Huang Q; Lu X
    J Food Sci; 2015 Apr; 80(4):N834-40. PubMed ID: 25736080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of particle abrasion through milling with five different salt grinders - a preliminary study by micro-Raman spectroscopy with efforts towards improved quality control of the analytical methods.
    Schymanski D; Humpf HU; Fürst P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Aug; 37(8):1238-1252. PubMed ID: 32428414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of filtration and imaging properties of analytical filters for microplastic capture and analysis.
    Carter J; Horan T; Miller J; Madejski G; Butler E; Amato C; Roussie J
    Chemosphere; 2023 Aug; 332():138811. PubMed ID: 37127196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments.
    Harrison JP; Ojeda JJ; Romero-González ME
    Sci Total Environ; 2012 Feb; 416():455-63. PubMed ID: 22221871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlative Microscopy and Spectroscopy Workflow for Microplastics.
    Sarau G; Kling L; Oßmann BE; Unger AK; Vogler F; Christiansen SH
    Appl Spectrosc; 2020 Sep; 74(9):1155-1160. PubMed ID: 32186214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of microplastics in white wines capped with polyethylene stoppers using micro-Raman spectroscopy.
    Prata JC; Paço A; Reis V; da Costa JP; Fernandes AJS; da Costa FM; Duarte AC; Rocha-Santos T
    Food Chem; 2020 Nov; 331():127323. PubMed ID: 32554310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of microplastics on filter substrates based on hyperspectral imaging: Laboratory assessments.
    Zhu C; Kanaya Y; Nakajima R; Tsuchiya M; Nomaki H; Kitahashi T; Fujikura K
    Environ Pollut; 2020 Aug; 263(Pt B):114296. PubMed ID: 32222664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SERS-active Ag Nanostars Substrates for Sensitive Detection of Ethyl Carbamate in Wine.
    Li M; Zhao Y; Cui M; Wang C; Song Q
    Anal Sci; 2016; 32(7):725-8. PubMed ID: 27396651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement.
    Lenz R; Enders K; Stedmon CA; Mackenzie DMA; Nielsen TG
    Mar Pollut Bull; 2015 Nov; 100(1):82-91. PubMed ID: 26455785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.