These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Schiml S; Fauser F; Puchta H Plant J; 2014 Dec; 80(6):1139-50. PubMed ID: 25327456 [TBL] [Abstract][Full Text] [Related]
3. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Fauser F; Schiml S; Puchta H Plant J; 2014 Jul; 79(2):348-59. PubMed ID: 24836556 [TBL] [Abstract][Full Text] [Related]
4. Using CRISPR/ttLbCas12a for in planta Gene Targeting in A. thaliana. Merker L; Schindele P; Puchta H Curr Protoc Plant Biol; 2020 Sep; 5(3):e20117. PubMed ID: 32865887 [TBL] [Abstract][Full Text] [Related]
5. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens. Collonnier C; Epert A; Mara K; Maclot F; Guyon-Debast A; Charlot F; White C; Schaefer DG; Nogué F Plant Biotechnol J; 2017 Jan; 15(1):122-131. PubMed ID: 27368642 [TBL] [Abstract][Full Text] [Related]
6. Gene Editing With TALEN and CRISPR/Cas in Rice. Bi H; Yang B Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502 [TBL] [Abstract][Full Text] [Related]
8. In planta gene targeting can be enhanced by the use of CRISPR/Cas12a. Wolter F; Puchta H Plant J; 2019 Dec; 100(5):1083-1094. PubMed ID: 31381206 [TBL] [Abstract][Full Text] [Related]
9. CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. Huang TK; Puchta H Plant Cell Rep; 2019 Apr; 38(4):443-453. PubMed ID: 30673818 [TBL] [Abstract][Full Text] [Related]
10. Quantitative assessment of HR and NHEJ activities via CRISPR/Cas9-induced oligodeoxynucleotide-mediated DSB repair. Du J; Yin N; Xie T; Zheng Y; Xia N; Shang J; Chen F; Zhang H; Yu J; Liu F DNA Repair (Amst); 2018 Oct; 70():67-71. PubMed ID: 30212742 [TBL] [Abstract][Full Text] [Related]
11. Designed nucleases for targeted genome editing. Lee J; Chung JH; Kim HM; Kim DW; Kim H Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767 [TBL] [Abstract][Full Text] [Related]
12. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Zhang WW; Matlashewski G mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745 [TBL] [Abstract][Full Text] [Related]
13. Engineering the Caenorhabditis elegans genome with CRISPR/Cas9. Waaijers S; Boxem M Methods; 2014 Aug; 68(3):381-8. PubMed ID: 24685391 [TBL] [Abstract][Full Text] [Related]
15. Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes. Cui Y; Dong H; Ma Y; Zhang D ACS Synth Biol; 2019 Oct; 8(10):2194-2202. PubMed ID: 31525995 [TBL] [Abstract][Full Text] [Related]
16. Gene editing using ssODNs with engineered endonucleases. Chen F; Pruett-Miller SM; Davis GD Methods Mol Biol; 2015; 1239():251-65. PubMed ID: 25408411 [TBL] [Abstract][Full Text] [Related]
17. Homology-Independent Integration of Plasmid DNA into the Zebrafish Genome. Auer TO; Del Bene F Methods Mol Biol; 2016; 1451():31-51. PubMed ID: 27464799 [TBL] [Abstract][Full Text] [Related]