These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
41. Effects of pH strategy on endo- and exo-metabolome profiles and sodium potassium hydrogen ports of beta-lactamase-producing Bacillus licheniformis. Ileri N; Calik P Biotechnol Prog; 2006; 22(2):411-9. PubMed ID: 16599555 [TBL] [Abstract][Full Text] [Related]
42. Microcalorimetric investigation on the growth model and the protein yield of Bacillus thuringiensis. Xiaoyan L; Yi L; Peng L; Songsheng Q; Ziniu Y J Biochem Biophys Methods; 2004 Jun; 59(3):267-74. PubMed ID: 15165757 [TBL] [Abstract][Full Text] [Related]
43. Bacillus thuringiensis fermentation of hydrolyzed sludge--rheology and formulation studies. Brar SK; Verma M; Tyagi RD; Valéro JR; Surampalli RY Chemosphere; 2007 Mar; 67(4):674-83. PubMed ID: 17184817 [TBL] [Abstract][Full Text] [Related]
44. [Influence of various ions in sporulation and the formation of delta-endotoxin in Bacillus thuringiensis cultures]. Faloci MM; Arcas JA; Yantorno OM Rev Argent Microbiol; 1986; 18(2):53-62. PubMed ID: 2825241 [TBL] [Abstract][Full Text] [Related]
45. Fed-batch fermentation studies with Bacillus thuringiensis H-14 synthesising endotoxin. Kuppusamy M; Balaraman K Indian J Exp Biol; 1991 Nov; 29(11):1031-4. PubMed ID: 1667779 [TBL] [Abstract][Full Text] [Related]
46. Production and characterization of polyhydroxyalkanoic acid from Bacillus thuringiensis using different carbon substrates. Odeniyi OA; Adeola OJ Int J Biol Macromol; 2017 Nov; 104(Pt A):407-413. PubMed ID: 28619635 [TBL] [Abstract][Full Text] [Related]
47. Metalloprotease from Bacillus thuringiensis. Li E; Yousten AA Appl Microbiol; 1975 Sep; 30(3):354-61. PubMed ID: 241290 [TBL] [Abstract][Full Text] [Related]
48. Glucose induced fractal colony pattern of Bacillus thuringiensis. Roy MK; Banerjee P; Sengupta TK; Dattagupta S J Theor Biol; 2010 Aug; 265(3):389-95. PubMed ID: 20553734 [TBL] [Abstract][Full Text] [Related]
49. Factors affecting lecithinase activity and production in Clostridium welchii. Nakamura M; Schulze JA; Cross WR J Hyg (Lond); 1969 Mar; 67(1):153-62. PubMed ID: 4322821 [No Abstract] [Full Text] [Related]
50. Aeration effects on metabolic events during sporulation of Bacillus thuringiensis. Sarrafzadeh MH; Schorr-Galindo S; La HJ; Oh HM J Microbiol; 2014 Jul; 52(7):597-603. PubMed ID: 24972809 [TBL] [Abstract][Full Text] [Related]
51. Kinetics of Bacillus thuringiensis var. israelensis growth on high glucose concentrations. Berbert-Molina MA; Prata AM; Pessanha LG; Silveira MM J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1397-404. PubMed ID: 18712542 [TBL] [Abstract][Full Text] [Related]
52. [Detection of thermolabile exotoxin in B. thuringiensis and its separation from phospholipase C]. Fluer FS; Ivinskene VL; Zaiachkauskas PA Zh Mikrobiol Epidemiol Immunobiol; 1981; (8):81-5. PubMed ID: 7315023 [No Abstract] [Full Text] [Related]
54. A MANOMETRIC METHOD FOR MEASURING THE ACTIVITY OF THE CL. WELCHII LECITHINASE AND A DESCRIPTION OF CERTAIN PROPERTIES OF THIS ENZYME. Zamecnik PC; Brewster LE; Lipmann F J Exp Med; 1947 Mar; 85(4):381-94. PubMed ID: 19871623 [TBL] [Abstract][Full Text] [Related]
55. Naproxen ecotoxicity and biodegradation by Bacillus thuringiensis B1(2015b) strain. Górny D; Guzik U; Hupert-Kocurek K; Wojcieszyńska D Ecotoxicol Environ Saf; 2019 Jan; 167():505-512. PubMed ID: 30368144 [TBL] [Abstract][Full Text] [Related]
56. [Bacteriological researches on the microorganisms of the Moxarella group. II. Lecithinase activity in strains of M. glucidolytica]. Andreoni O; Stangalini A; Fortina G; Martelli A; Farinetti F Ann Sclavo; 1971; 13(1):79-87. PubMed ID: 4949197 [No Abstract] [Full Text] [Related]
57. The use of enzyme lecithinase in grouping some members of the genus Bacillus. COLMER AR J Bacteriol; 1947 Jul; 54(1):11. PubMed ID: 20344232 [No Abstract] [Full Text] [Related]