BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28440000)

  • 1. Human symptom responses to bioeffluents, short-chain carbonyls/acids, and long-chain carbonyls in a simulated aircraft cabin environment.
    Weisel CP; Fiedler N; Weschler CJ; Ohman-Strickland PA; Mohan KR; McNeil K; Space DR
    Indoor Air; 2017 Nov; 27(6):1154-1167. PubMed ID: 28440000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on: "Human symptom responses to bioeffluents, short-chain carbonyl/acids and long-chain carbonyls in a simulated aircraft cabin environment" by Weisel et al., Indoor Air (2017).
    Wolkoff P; Nielsen GD
    Indoor Air; 2017 Nov; 27(6):1224-1225. PubMed ID: 29024111
    [No Abstract]   [Full Text] [Related]  

  • 3. Influencing factors of carbonyl compounds and other VOCs in commercial airliner cabins: On-board investigation of 56 flights.
    Yin Y; He J; Pei J; Yang X; Sun Y; Cui X; Lin CH; Wei D; Chen Q
    Indoor Air; 2021 Nov; 31(6):2084-2098. PubMed ID: 34240486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passenger evaluation of the optimum balance between fresh air supply and humidity from 7-h exposures in a simulated aircraft cabin.
    Strøm-Tejsen P; Wyon DP; Lagercrantz L; Fang L
    Indoor Air; 2007 Apr; 17(2):92-108. PubMed ID: 17391232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance.
    Zhang X; Wargocki P; Lian Z; Thyregod C
    Indoor Air; 2017 Jan; 27(1):47-64. PubMed ID: 26825447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of ozone on self-evaluation of symptoms in a simulated aircraft cabin.
    Strøm-Tejsen P; Weschler CJ; Wargocki P; Myśków D; Zarzycka J
    J Expo Sci Environ Epidemiol; 2008 May; 18(3):272-81. PubMed ID: 17565354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical review of reported air concentrations of organic compounds in aircraft cabins.
    Nagda NL; Rector HE
    Indoor Air; 2003 Sep; 13(3):292-301. PubMed ID: 12950593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Products of ozone-initiated chemistry in a simulated aircraft environment.
    Wisthaler A; Tamás G; Wyon DP; Strøm-Tejsen P; Space D; Beauchamp J; Hansel A; Märk TD; Weschler CJ
    Environ Sci Technol; 2005 Jul; 39(13):4823-32. PubMed ID: 16053080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological responses during exposure to carbon dioxide and bioeffluents at levels typically occurring indoors.
    Zhang X; Wargocki P; Lian Z
    Indoor Air; 2017 Jan; 27(1):65-77. PubMed ID: 26865538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cabin air filtration: helping to protect occupants from infectious diseases.
    Bull K
    Travel Med Infect Dis; 2008 May; 6(3):142-4. PubMed ID: 18486070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pollutant exposures and health symptoms in aircrew and office workers: Is there a link?
    Wolkoff P; Crump DR; Harrison PT
    Environ Int; 2016 Feb; 87():74-84. PubMed ID: 26641522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic compounds in office environments - sensory irritation, odor, measurements and the role of reactive chemistry.
    Wolkoff P; Wilkins CK; Clausen PA; Nielsen GD
    Indoor Air; 2006 Feb; 16(1):7-19. PubMed ID: 16420493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cabin air quality: an overview.
    Rayman RB
    Aviat Space Environ Med; 2002 Mar; 73(3):211-5. PubMed ID: 11908887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a new photocatalytic oxidation air filter for aircraft cabin.
    Ginestet A; Pugnet D; Rowley J; Bull K; Yeomans H
    Indoor Air; 2005 Oct; 15(5):326-34. PubMed ID: 16108905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Aircraft cabin air quality: exposure to ozone].
    Uva Ade S
    Acta Med Port; 2002; 15(2):143-51. PubMed ID: 15524159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Health and perception of cabin air quality among Swedish commercial airline crew.
    Lindgren T; Norbäck D
    Indoor Air; 2005; 15 Suppl 10():65-72. PubMed ID: 15926946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of ozone and its volatiles in indoor environment: a numerical simulation with CFD for the aircraft cabin.
    Shi Z; Bai J; Han Y
    Environ Technol; 2020 Oct; 41(24):3146-3156. PubMed ID: 30905310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advantages for passengers and cabin crew of operating a gas-phase adsorption air purifier in 11-h simulated flights.
    Strøm-Tejsen P; Zukowska D; Fang L; Space DR; Wyon DP
    Indoor Air; 2008 Jun; 18(3):172-81. PubMed ID: 18312334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Furry pet allergens, fungal DNA and microbial volatile organic compounds (MVOCs) in the commercial aircraft cabin environment.
    Fu X; Lindgren T; Guo M; Cai GH; Lundgren H; Norbäck D
    Environ Sci Process Impacts; 2013 Jun; 15(6):1228-34. PubMed ID: 23644832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perception of cabin air quality in airline crew related to air humidification, on intercontinental flights.
    Lindgren T; Norbäck D; Wieslander G
    Indoor Air; 2007 Jun; 17(3):204-10. PubMed ID: 17542833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.