These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
782 related articles for article (PubMed ID: 28440203)
1. Antimicrobial, Biofilm Inhibitory and Anti-infective Activity of Metallic Nanoparticles Against Pathogens MRSA and Pseudomonas aeruginosa PA01. Aswathanarayan JB; Vittal RR Pharm Nanotechnol; 2017; 5(2):148-153. PubMed ID: 28440203 [TBL] [Abstract][Full Text] [Related]
2. Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates. Abdelraheem WM; Khairy RMM; Zaki AI; Zaki SH Ann Clin Microbiol Antimicrob; 2021 Aug; 20(1):54. PubMed ID: 34419054 [TBL] [Abstract][Full Text] [Related]
3. Single step production of high-purity copper oxide-titanium dioxide nanocomposites and their effective antibacterial and anti-biofilm activity against drug-resistant bacteria. Baig U; Ansari MA; Gondal MA; Akhtar S; Khan FA; Falath WS Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110992. PubMed ID: 32487404 [TBL] [Abstract][Full Text] [Related]
4. Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using Garza-Cervantes JA; Escárcega-González CE; Barriga Castro ED; Mendiola-Garza G; Marichal-Cancino BA; López-Vázquez MA; Morones-Ramirez JR Int J Nanomedicine; 2019; 14():2557-2571. PubMed ID: 31118605 [No Abstract] [Full Text] [Related]
6. Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1. Rajkumari J; Busi S; Vasu AC; Reddy P Microb Pathog; 2017 Jun; 107():261-269. PubMed ID: 28377235 [TBL] [Abstract][Full Text] [Related]
7. Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus. Banerjee S; Vishakha K; Das S; Dutta M; Mukherjee D; Mondal J; Mondal S; Ganguli A Colloids Surf B Biointerfaces; 2020 Jun; 190():110921. PubMed ID: 32172163 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial and photocatalytic activities of 5-nitroindole capped bimetal nanoparticles against multidrug resistant bacteria. Manoharan RK; Mahalingam S; Gangadaran P; Ahn YH Colloids Surf B Biointerfaces; 2020 Apr; 188():110825. PubMed ID: 32006909 [TBL] [Abstract][Full Text] [Related]
9. Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. Divya M; Vaseeharan B; Abinaya M; Vijayakumar S; Govindarajan M; Alharbi NS; Kadaikunnan S; Khaled JM; Benelli G J Photochem Photobiol B; 2018 Jan; 178():211-218. PubMed ID: 29156349 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Medina Cruz D; Mi G; Webster TJ J Biomed Mater Res A; 2018 May; 106(5):1400-1412. PubMed ID: 29356322 [TBL] [Abstract][Full Text] [Related]
11. In vitro inhibitory activity of N-acetylcysteine on tympanostomy tube biofilms from methicillin-resistant Staphylococcus aureus and quinolone-resistant Pseudomonas aeruginosa. Jun Y; Youn CK; Jo ER; Cho SI Int J Pediatr Otorhinolaryngol; 2019 Nov; 126():109622. PubMed ID: 31404783 [TBL] [Abstract][Full Text] [Related]
12. Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gram-Positive Staphylococci. Boda SK; Broda J; Schiefer F; Weber-Heynemann J; Hoss M; Simon U; Basu B; Jahnen-Dechent W Small; 2015 Jul; 11(26):3183-93. PubMed ID: 25712910 [TBL] [Abstract][Full Text] [Related]
13. Biopolymer K-carrageenan wrapped ZnO nanoparticles as drug delivery vehicles for anti MRSA therapy. Vijayakumar S; Saravanakumar K; Malaikozhundan B; Divya M; Vaseeharan B; Durán-Lara EF; Wang MH Int J Biol Macromol; 2020 Feb; 144():9-18. PubMed ID: 31821826 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of methicillin-resistant Qiu Y; Wu Y; Lu B; Zhu G; Gong T; Wang R; Peng Q; Li Y Biofouling; 2020 Feb; 36(2):159-168. PubMed ID: 32182142 [TBL] [Abstract][Full Text] [Related]
15. Bio-functionalization of phytogenic Ag and ZnO nanobactericides onto cellulose films for bactericidal activity against multiple drug resistant pathogens. Baker S; Prudnikova SV; Shumilova AA; Perianova OV; Zharkov SM; Kuzmin A J Microbiol Methods; 2019 Apr; 159():42-50. PubMed ID: 30797021 [TBL] [Abstract][Full Text] [Related]
16. Evaluate the Effect of Zinc Oxide and Silver Nanoparticles on Biofilm and icaA Gene Expression in Methicillin-Resistant Staphylococcus aureus Isolated From Burn Wound Infection. Shakerimoghaddam A; Razavi D; Rahvar F; Khurshid M; Ostadkelayeh SM; Esmaeili SA; Khaledi A; Eshraghi M J Burn Care Res; 2020 Nov; 41(6):1253-1259. PubMed ID: 32479611 [TBL] [Abstract][Full Text] [Related]
17. In Vivo and in Vitro activity of colistin-conjugated bimetallic silver-copper oxide nanoparticles against Pandrug-resistant Pseudomonas aeruginosa. Abdul Hak A; Zedan HH; El-Mahallawy HA; El-Sayyad GS; Zafer MM BMC Microbiol; 2024 Jun; 24(1):213. PubMed ID: 38886632 [TBL] [Abstract][Full Text] [Related]
18. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains. Gugala N; Lemire JA; Turner RJ J Antibiot (Tokyo); 2017 Jun; 70(6):775-780. PubMed ID: 28196974 [TBL] [Abstract][Full Text] [Related]
19. The effect of Zinc Oxide nanoparticles on Pseudomonas aeruginosa biofilm formation and virulence genes expression. Abdelraheem WM; Mohamed ES J Infect Dev Ctries; 2021 Jun; 15(6):826-832. PubMed ID: 34242193 [TBL] [Abstract][Full Text] [Related]
20. Preparation of Zinc Oxide Nanoparticles and the Evaluation of their Antibacterial Effects. Park J; Lee G; Choi Y; Kim J; Park S; Lee HY; Choi J J Vis Exp; 2024 Sep; (211):. PubMed ID: 39400132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]