BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 28440203)

  • 21. Silver nanoparticles as a bioadjuvant of antibiotics against biofilm-mediated infections with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in chronic rhinosinusitis patients.
    Feizi S; Cooksley CM; Nepal R; Psaltis AJ; Wormald PJ; Vreugde S
    Pathology; 2022 Jun; 54(4):453-459. PubMed ID: 34844745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis, characterization, and evaluation of antibacterial efficacy of rhamnolipid-coated zinc oxide nanoparticles against Staphylococcus aureus.
    Malakar C; Patowary K; Deka S; Kalita MC
    World J Microbiol Biotechnol; 2021 Oct; 37(11):193. PubMed ID: 34642826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antibiotics Enhance Prevention and Eradication Efficacy of Cathodic-Voltage-Controlled Electrical Stimulation against Titanium-Associated Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Biofilms.
    Canty MK; Hansen LA; Tobias M; Spencer S; Henry T; Luke-Marshall NR; Campagnari AA; Ehrensberger MT
    mSphere; 2019 May; 4(3):. PubMed ID: 31043516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae.
    Vijayakumar S; Vinoj G; Malaikozhundan B; Shanthi S; Vaseeharan B
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():886-91. PubMed ID: 25280336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae.
    Bhattacharyya P; Agarwal B; Goswami M; Maiti D; Baruah S; Tribedi P
    Antonie Van Leeuwenhoek; 2018 Jan; 111(1):89-99. PubMed ID: 28889242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ciprofloxacin-eluting nanofibers inhibits biofilm formation by Pseudomonas aeruginosa and a methicillin-resistant Staphylococcus aureus.
    Ahire JJ; Neveling DP; Hattingh M; Dicks LM
    PLoS One; 2015; 10(4):e0123648. PubMed ID: 25853255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibacterial Surfaces with Activity against Antimicrobial Resistant Bacterial Pathogens and Endospores.
    Sehmi SK; Lourenco C; Alkhuder K; Pike SD; Noimark S; Williams CK; Shaffer MSP; Parkin IP; MacRobert AJ; Allan E
    ACS Infect Dis; 2020 May; 6(5):939-946. PubMed ID: 32126763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable ZnO spheres with high anti-biofilm and antibacterial activity via a simple green hydrothermal route.
    Patrinoiu G; Calderón-Moreno JM; Chifiriuc CM; Saviuc C; Birjega R; Carp O
    J Colloid Interface Sci; 2016 Jan; 462():64-74. PubMed ID: 26433479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofabrication of ZnO nanoparticles using Acacia arabica leaf extract and their antibiofilm and antioxidant potential against foodborne pathogens.
    Hayat S; Ashraf A; Zubair M; Aslam B; Siddique MH; Khurshid M; Saqalein M; Khan AM; Almatroudi A; Naeem Z; Muzammil S
    PLoS One; 2022; 17(1):e0259190. PubMed ID: 34986148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formulation Optimization of Chitosan-Stabilized Silver Nanoparticles Using In Vitro Antimicrobial Assay.
    Pansara C; Chan WY; Parikh A; Trott DJ; Mehta T; Mishra R; Garg S
    J Pharm Sci; 2019 Feb; 108(2):1007-1016. PubMed ID: 30244012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative in situ ROS mediated killing of bacteria with bulk analogue, Eucalyptus leaf extract (ELE)-capped and bare surface copper oxide nanoparticles.
    Ali K; Ahmed B; Ansari SM; Saquib Q; Al-Khedhairy AA; Dwivedi S; Alshaeri M; Khan MS; Musarrat J
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():747-758. PubMed ID: 30948112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation.
    Chakraborty P; Joardar S; Ray S; Biswas P; Maiti D; Tribedi P
    Folia Microbiol (Praha); 2018 Nov; 63(6):763-772. PubMed ID: 29855854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antimicrobial, antibiofilm, and antivirulence properties of Eisenia bicyclis-extracts and Eisenia bicyclis-gold nanoparticles towards microbial pathogens.
    Oh D; Khan F; Park SK; Jo DM; Kim NG; Jung WK; Kim YM
    Microb Pathog; 2024 Mar; 188():106546. PubMed ID: 38278457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oligodynamic Boons of Daptomycin and Noble Metal Nanoparticles Packaged in an Anti-MRSA Topical Gel Formulation.
    Chakravarty I; Kundu S
    Curr Pharm Biotechnol; 2019; 20(9):707-718. PubMed ID: 31223082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of Ag, Se, and ZnO nanoparticles with antimicrobial activities against resistant pathogens using waste isolate
    Shaaban M; El-Mahdy AM
    IET Nanobiotechnol; 2018 Sep; 12(6):741-747. PubMed ID: 30104447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attenuation of biofilm and virulence factors of Pseudomonas aeruginosa by tetramethylpyrazine-gold nanoparticles.
    Tabassum N; Jeong GJ; Jo DM; Khan F; Kim YM
    Microb Pathog; 2024 Jun; 191():106658. PubMed ID: 38643850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles.
    García-Lara B; Saucedo-Mora MÁ; Roldán-Sánchez JA; Pérez-Eretza B; Ramasamy M; Lee J; Coria-Jimenez R; Tapia M; Varela-Guerrero V; García-Contreras R
    Lett Appl Microbiol; 2015 Sep; 61(3):299-305. PubMed ID: 26084709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms.
    Armijo LM; Wawrzyniec SJ; Kopciuch M; Brandt YI; Rivera AC; Withers NJ; Cook NC; Huber DL; Monson TC; Smyth HDC; Osiński M
    J Nanobiotechnology; 2020 Feb; 18(1):35. PubMed ID: 32070354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity of zinc oxide and zinc borate nanoparticles against resistant bacteria in an experimental lung cancer model.
    Celebi D; Celebi O; Taghizadehghalehjoughi A; Baser S; Aydın E; Calina D; Charvalos E; Docea AO; Tsatsakis A; Mezhuev Y; Yildirim S
    Daru; 2024 Jun; 32(1):197-206. PubMed ID: 38366078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Nanosulfur Against Multidrug-Resistant Staphylococcus pseudintermedius and Pseudomonas aeruginosa.
    Kher L; Santoro D; Kelley K; Gibson D; Schultz G
    Appl Microbiol Biotechnol; 2022 Apr; 106(8):3201-3213. PubMed ID: 35384449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.