BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28440366)

  • 1. Improved electrical conductivity of TPU/carbon black composites by addition of COPA and selective localization of carbon black at the interface of sea-island structured polymer blends.
    Zhang Q; Wang J; Yu J; Guo ZX
    Soft Matter; 2017 May; 13(18):3431-3439. PubMed ID: 28440366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Electrical Conductivity of Carbon-Black-Filled Ternary Polymer Blends by Constructing a Hierarchical Structure.
    Zhang Q; Zhang BY; Guo ZX; Yu J
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Three Interfacial Conductive Networks Formed in Carbon Black-Filled PA6/PBT Blends.
    Li H; Tuo X; Guo BH; Yu J; Guo ZX
    Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of polyamide 6 on the morphology and electrical conductivity of carbon black-filled polypropylene composites.
    Zhang X; Liu J; Wang Y; Wu W
    R Soc Open Sci; 2017 Dec; 4(12):170769. PubMed ID: 29308223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Styrene-butadiene-styrene copolymer compatibilized carbon black/polypropylene/polystyrene composites with tunable morphology, electrical conduction and rheological stabilities.
    Song Y; Xu C; Zheng Q
    Soft Matter; 2014 Apr; 10(15):2685-92. PubMed ID: 24647801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane.
    Kim NP
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32471243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable and Toughened Composite of Poly(Propylene Carbonate)/Thermoplastic Polyurethane (PPC/TPU): Effect of Hydrogen Bonding.
    Han D; Chen G; Xiao M; Wang S; Chen S; Peng X; Meng Y
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30011782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Localization of Carbon Black in Bio-Based Poly (Lactic Acid)/Recycled High-Density Polyethylene Co-Continuous Blends to Design Electrical Conductive Composites with a Low Percolation Threshold.
    Lu X; Kang B; Shi S
    Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31569802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors.
    Sang Z; Ke K; Manas-Zloczower I
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36483-36492. PubMed ID: 30280558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal, Morphological, Electrical Properties and Touch-Sensor Application of Conductive Carbon Black-Filled Polyamide Composites.
    Brunella V; Rossatto BG; Scarano D; Cesano F
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoplastic Starch-Based Composite Reinforced by Conductive Filler Networks: Physical Properties and Electrical Conductivity Changes during Cyclic Deformation.
    Peidayesh H; Mosnáčková K; Špitalský Z; Heydari A; Šišková AO; Chodák I
    Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic Control of Graphene Localization in Co-continuous Polymer Blends via Melt Compounding.
    Bai L; Sharma R; Cheng X; Macosko CW
    Langmuir; 2018 Jan; 34(3):1073-1083. PubMed ID: 29035563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics.
    Tzounis L; Petousis M; Grammatikos S; Vidakis N
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of Carbon Nanofillers Tunes Mechanical and Electrical Percolation in PHBV:PLA Blends.
    Arroyo J; Ryan C
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and laser sintering of a thermoplastic polyurethane carbon nanotube composite-based pressure sensor.
    Zhuang Y; Guo Y; Li J; Jiang K; Yu Y; Zhang H; Liu D
    RSC Adv; 2020 Jun; 10(40):23644-23652. PubMed ID: 35517319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of phase coarsening under melt annealing on the electrical performance of polymer composites with a double percolation structure.
    Sun XR; Gong T; Pu JH; Bao RY; Xie BH; Yang MB; Yang W
    Phys Chem Chem Phys; 2017 Dec; 20(1):137-147. PubMed ID: 29211093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing.
    Eutionnat-Diffo PA; Cayla A; Chen Y; Guan J; Nierstrasz V; Campagne C
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Thermoplastic Polyurethane (TPU) and Ag-Carbon Black TPU Nanocomposite for Potential Application in Additive Manufacturing.
    Patton ST; Chen C; Hu J; Grazulis L; Schrand AM; Roy AK
    Polymers (Basel); 2016 Dec; 9(1):. PubMed ID: 30970684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of Mechanical Property for PLA/TPU Blend by Adding PLA-TPU Copolymers Prepared via In Situ Ring-Opening Polymerization.
    Fang H; Zhang L; Chen A; Wu F
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates.
    Muñoz-Chilito J; Lara-Ramos JA; Marín L; Machuca-Martínez F; Correa-Aguirre JP; Hidalgo-Salazar MA; García-Navarro S; Roca-Blay L; Rodríguez LA; Mosquera-Vargas E; Diosa JE
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.