These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28440567)

  • 41. Self-Assembled Sandwich-like Vanadium Oxide/Graphene Mesoporous Composite as High-Capacity Anode Material for Lithium Ion Batteries.
    Wang X; Huang Y; Jia D; Pang WK; Guo Z; Du Y; Tang X; Cao Y
    Inorg Chem; 2015 Dec; 54(24):11799-806. PubMed ID: 26650604
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Freeze-Dried Sulfur-Graphene Oxide-Carbon Nanotube Nanocomposite for High Sulfur-Loading Lithium/Sulfur Cells.
    Hwa Y; Seo HK; Yuk JM; Cairns EJ
    Nano Lett; 2017 Nov; 17(11):7086-7094. PubMed ID: 29035057
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A New Polyoxometalate (POM)-Based Composite: Fabrication through POM-Assisted Polymerization of Dopamine and Properties as Anode Materials for High-Performance Lithium-Ion Batteries.
    Ding YH; Peng J; Khan SU; Yuan Y
    Chemistry; 2017 Aug; 23(43):10338-10343. PubMed ID: 28544255
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.
    Na Z; Huang G; Liang F; Yin D; Wang L
    Chemistry; 2016 Aug; 22(34):12081-7. PubMed ID: 27406922
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2014 Feb; 7(2):523-8. PubMed ID: 24243867
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries.
    Lin J; Peng Z; Xiang C; Ruan G; Yan Z; Natelson D; Tour JM
    ACS Nano; 2013 Jul; 7(7):6001-6. PubMed ID: 23758123
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium Ion Battery Anode Material with High Capacity and Cycling Stability.
    Xu H; Shi L; Wang Z; Liu J; Zhu J; Zhao Y; Zhang M; Yuan S
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27486-93. PubMed ID: 26606370
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode.
    McCulloch WD; Ren X; Yu M; Huang Z; Wu Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26158-66. PubMed ID: 26550678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage.
    Chen D; Quan H; Liang J; Guo L
    Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hierarchical Sandwich-Like Structure of Ultrafine N-Rich Porous Carbon Nanospheres Grown on Graphene Sheets as Superior Lithium-Ion Battery Anodes.
    Xie Z; He Z; Feng X; Xu W; Cui X; Zhang J; Yan C; Carreon MA; Liu Z; Wang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10324-33. PubMed ID: 27071473
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries.
    Wang Y; Huang ZX; Shi Y; Wong JI; Ding M; Yang HY
    Sci Rep; 2015 Mar; 5():9164. PubMed ID: 25776280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrochemical Performance and Storage Mechanism of Ag
    Zhang M; Gao Y; Chen N; Ge X; Chen H; Wei Y; Du F; Chen G; Wang C
    Chemistry; 2017 Apr; 23(21):5148-5153. PubMed ID: 28244150
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An ultrastable anode for long-life room-temperature sodium-ion batteries.
    Yu H; Ren Y; Xiao D; Guo S; Zhu Y; Qian Y; Gu L; Zhou H
    Angew Chem Int Ed Engl; 2014 Aug; 53(34):8963-9. PubMed ID: 24962822
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.
    Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W
    Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene.
    Xie J; Zhang Y; Han Y; Li C
    ACS Nano; 2016 May; 10(5):5304-13. PubMed ID: 27116433
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Free-standing reduced graphene oxide/MnO
    Li Y; Ye D; Shi B; Liu W; Guo R; Pei H; Xie J
    Phys Chem Chem Phys; 2017 Mar; 19(11):7498-7505. PubMed ID: 28067361
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flexible and free-standing ternary Cd₂GeO₄ nanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance.
    Wang L; Zhang X; Shen G; Peng X; Zhang M; Xu J
    Nanotechnology; 2016 Mar; 27(9):095602. PubMed ID: 26822529
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Constructing Highly Graphitized Carbon-Wrapped Li3VO4 Nanoparticles with Hierarchically Porous Structure as a Long Life and High Capacity Anode for Lithium-Ion Batteries.
    Zhao D; Cao M
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25084-93. PubMed ID: 26502345
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries.
    Wang J; Feng CQ; Sun ZQ; Chou SL; Liu HK; Wang JZ
    Sci Rep; 2014 Nov; 4():7030. PubMed ID: 25391220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.