These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2844061)

  • 1. Long-term consequence of early iron-deficiency on dopaminergic neurotransmission in rats.
    Ben-Shachar D; Ashkenazi R; Youdim MB
    Int J Dev Neurosci; 1986; 4(1):81-8. PubMed ID: 2844061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal brain damage induced by early iron deficiency: modified dopaminergic neurotransmission.
    Youdim MB; Ben-Shachar D
    Isr J Med Sci; 1987; 23(1-2):19-25. PubMed ID: 3032848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutritional iron and dopamine binding sites in the rat brain.
    Ashkenazi R; Ben-Shachar D; Youdim MB
    Pharmacol Biochem Behav; 1982; 17 Suppl 1():43-7. PubMed ID: 7184034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron deficiency alters discrete proteins in rat caudate nucleus and nucleus accumbens.
    Youdim MB; Sills MA; Heydorn WE; Creed GJ; Jacobowitz DM
    J Neurochem; 1986 Sep; 47(3):794-9. PubMed ID: 2942640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain iron-deficiency causes reduced learning capacity in rats.
    Yehuda S; Youdim ME; Mostofsky DI
    Pharmacol Biochem Behav; 1986 Jul; 25(1):141-4. PubMed ID: 3018790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroleptic-induced supersensitivity and brain iron: I. Iron deficiency and neuroleptic-induced dopamine D2 receptor supersensitivity.
    Ben-Shachar D; Youdim MB
    J Neurochem; 1990 Apr; 54(4):1136-41. PubMed ID: 1968955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putative biological mechanisms of the effect of iron deficiency on brain biochemistry and behavior.
    Youdim MB; Ben-Shachar D; Yehuda S
    Am J Clin Nutr; 1989 Sep; 50(3 Suppl):607-15; discussion 615-7. PubMed ID: 2773840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6-hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of D1- and D2-dopamine agonists into nucleus accumbens and striatum without changing dopamine antagonist binding.
    Breese GR; Duncan GE; Napier TC; Bondy SC; Iorio LC; Mueller RA
    J Pharmacol Exp Ther; 1987 Jan; 240(1):167-76. PubMed ID: 3100767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain iron: a lesson from animal models.
    Yehuda S; Youdim MB
    Am J Clin Nutr; 1989 Sep; 50(3 Suppl):618-25; discussion 625-9. PubMed ID: 2570524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo labelling of rat brain dopamine D-2 receptors. Stereoselective blockade by the D-2 antagonist raclopride and its enantiomer of 3H-spiperone, 3H-N,N-propylnorapomorphine and 3H-raclopride binding in the rat brain.
    Köhler C; Karlsson-Boethius G
    J Neural Transm; 1988; 73(2):87-100. PubMed ID: 2974879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of dopamine receptors by thyrotropin-releasing hormone in the rat brain.
    Funatsu KS; Inanaga K
    Peptides; 1987; 8(2):319-25. PubMed ID: 3035515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of neuroleptic-induced dopamine D2 receptor supersensitivity by chronic iron salt treatment.
    Ben-Shachar D; Pinhassi B; Youdim MB
    Eur J Pharmacol; 1991 Sep; 202(2):177-83. PubMed ID: 1687031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo interaction of gamma-type endorphins with dopaminergic ligands in rat brain.
    Codd EE; Scholtens H; Wolterink G; Verhoef JC; Van Ree JM; Witter A
    Eur J Pharmacol; 1983 Apr; 88(4):365-70. PubMed ID: 6861877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete conversion of brain D2 dopamine receptors from the high- to the low-affinity state for dopamine agonists, using sodium ions and guanine nucleotide.
    Grigoriadis D; Seeman P
    J Neurochem; 1985 Jun; 44(6):1925-35. PubMed ID: 3157782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic neonatal blockade of N-methyl-D-aspartate receptor by CGP 39551 increases dopaminergic function in adult rat.
    Dall'Olio R; Facchinetti F; Contestabile A; Gandolfi O
    Neuroscience; 1994 Nov; 63(2):451-5. PubMed ID: 7891857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopaminergic supersensitivity follows ferric chloride-induced limbic seizures.
    Csernansky JG; Csernansky CA; Bonnet KA; Hollister LE
    Biol Psychiatry; 1985 Jul; 20(7):723-33. PubMed ID: 4039950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of mergocryptine-induced suppression of dopamine turnover in the rat striatum.
    Hashimoto T; Katsura M; Kuriyama K
    Eur J Pharmacol; 1991 Jun; 198(2-3):121-7. PubMed ID: 1864302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron deficiency decreases dopamine D1 and D2 receptors in rat brain.
    Erikson KM; Jones BC; Hess EJ; Zhang Q; Beard JL
    Pharmacol Biochem Behav; 2001; 69(3-4):409-18. PubMed ID: 11509198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of neurotensin with brain dopamine systems: biochemical and behavioral studies.
    Nemeroff CB; Luttinger D; Hernandez DE; Mailman RB; Mason GA; Davis SD; Widerlöv E; Frye GD; Kilts CA; Beaumont K; Breese GR; Prange AJ
    J Pharmacol Exp Ther; 1983 May; 225(2):337-45. PubMed ID: 6682440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of iron chelators on dopamine D2 receptors.
    Ben-Shachar D; Finberg JP; Youdim MB
    J Neurochem; 1985 Oct; 45(4):999-1005. PubMed ID: 2993525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.