These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28440651)

  • 1. Iron-Catalyzed Acyloxyalkylation of Styrenes Using Hypervalent Iodine Reagents.
    Wang Z; Kanai M; Kuninobu Y
    Org Lett; 2017 May; 19(9):2398-2401. PubMed ID: 28440651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective dioxytosylation of styrenes using lactate-based chiral hypervalent iodine(III).
    Fujita M; Miura K; Sugimura T
    Beilstein J Org Chem; 2018; 14():659-663. PubMed ID: 29623128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypervalent iodine(III)-mediated oxidative decarboxylation of β,γ-unsaturated carboxylic acids.
    Kiyokawa K; Yahata S; Kojima T; Minakata S
    Org Lett; 2014 Sep; 16(17):4646-9. PubMed ID: 25162482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Mechanochemical, Catalyst-Free Cascade Synthesis of 1,3-Diols and 1,4-Iodoalcohols Using Styrenes and Hypervalent Iodine Reagents.
    Pan L; Zheng L; Chen Y; Ke Z; Yeung YY
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202207926. PubMed ID: 35829718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkene oxyalkylation enabled by merging rhenium catalysis with hypervalent iodine(III) reagents via decarboxylation.
    Wang Y; Zhang L; Yang Y; Zhang P; Du Z; Wang C
    J Am Chem Soc; 2013 Dec; 135(48):18048-51. PubMed ID: 24236498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodium(III)-Catalyzed C-H Alkynylation of Ferrocenes with Hypervalent Iodine Reagents.
    Wang SB; Gu Q; You SL
    J Org Chem; 2017 Nov; 82(22):11829-11835. PubMed ID: 28466643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypervalent iodine-catalyzed oxidative functionalizations including stereoselective reactions.
    Singh FV; Wirth T
    Chem Asian J; 2014 Apr; 9(4):950-71. PubMed ID: 24523252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-Catalyzed C(sp
    Wang L; Li H; Wang L
    Org Lett; 2018 Mar; 20(6):1663-1666. PubMed ID: 29508617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sunlight-Driven Decarboxylative Alkynylation of α-Keto Acids with Bromoacetylenes by Hypervalent Iodine Reagent Catalysis: A Facile Approach to Ynones.
    Tan H; Li H; Ji W; Wang L
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8374-7. PubMed ID: 26031476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient palladium-catalyzed C-H alkoxylation of unactivated methylene and methyl groups with cyclic hypervalent iodine (i(3+) ) oxidants.
    Shan G; Yang X; Zong Y; Rao Y
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13606-10. PubMed ID: 24214420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of New Radical-mediated Selective Reactions Promoted by Hypervalent Iodine(III) Reagents.
    Matsumoto A; Lee HJ; Maruoka K
    Chem Rec; 2020 Nov; ():. PubMed ID: 33210803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regio- and Stereoselective Iron-Catalyzed Oxyazidation of Enamides Using a Hypervalent Iodine Reagent.
    Bertho S; Rey-Rodriguez R; Colas C; Retailleau P; Gillaizeau I
    Chemistry; 2017 Dec; 23(70):17674-17677. PubMed ID: 29143478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the right mechanism for hypervalent iodine reagents by applying two types of hypervalent twist models: apical twist and equatorial twist.
    Sun TY; Chen K; Lin Q; You T; Yin P
    Phys Chem Chem Phys; 2021 Mar; 23(11):6758-6762. PubMed ID: 33711091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of [1,2,3]Triazolo-[1,5-
    Wen J; Zhao W; Gao X; Ren X; Dong C; Wang C; Liu L; Li J
    J Org Chem; 2022 Mar; 87(6):4415-4423. PubMed ID: 35234036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room temperature iron(ii)-catalyzed radical cyclization of unsaturated oximes with hypervalent iodine reagents.
    Yang S; Li H; Li P; Yang J; Wang L
    Org Biomol Chem; 2020 Jan; 18(4):715-724. PubMed ID: 31912076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous-Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications.
    Elsherbini M; Winterson B; Alharbi H; Folgueiras-Amador AA; Génot C; Wirth T
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9811-9815. PubMed ID: 31050149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Synthetic Applications of Hypervalent Iodine Compounds.
    Yoshimura A; Zhdankin VV
    Chem Rev; 2016 Mar; 116(5):3328-435. PubMed ID: 26861673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic applications of pseudocyclic hypervalent iodine compounds.
    Yoshimura A; Yusubov MS; Zhdankin VV
    Org Biomol Chem; 2016 Jun; 14(21):4771-81. PubMed ID: 27143521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-N Axial Chiral Hypervalent Iodine Reagents: Catalytic Stereoselective α-Oxytosylation of Ketones.
    Alharbi H; Elsherbini M; Qurban J; Wirth T
    Chemistry; 2021 Mar; 27(13):4317-4321. PubMed ID: 33428245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypervalent iodine reagents enable chemoselective deboronative/decarboxylative alkenylation by photoredox catalysis.
    Huang H; Jia K; Chen Y
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1881-4. PubMed ID: 25504966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.