BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28440887)

  • 1. MicroRNA regulation of extracellular matrix components in the process of atherosclerotic plaque destabilization.
    Kowara M; Cudnoch-Jedrzejewska A; Opolski G; Wlodarski P
    Clin Exp Pharmacol Physiol; 2017 Jul; 44(7):711-718. PubMed ID: 28440887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrophage-mediated proteolytic remodeling of the extracellular matrix in atherosclerosis results in neoepitopes: a potential new class of biochemical markers.
    Skjøt-Arkil H; Barascuk N; Register T; Karsdal MA
    Assay Drug Dev Technol; 2010 Oct; 8(5):542-52. PubMed ID: 20662734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen and related extracellular matrix proteins in atherosclerotic plaque development.
    Shami A; Gonçalves I; Hultgårdh-Nilsson A
    Curr Opin Lipidol; 2014 Oct; 25(5):394-9. PubMed ID: 25137612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive analysis of dysregulated genes associated with atherosclerotic plaque destabilization.
    Qian C; Jing Y; Xia M; Ye Q
    Exp Biol Med (Maywood); 2021 Dec; 246(23):2487-2494. PubMed ID: 34308657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs.
    Fan X; Wang E; Wang X; Cong X; Chen X
    Exp Mol Pathol; 2014 Apr; 96(2):242-9. PubMed ID: 24594117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular imaging of the extracellular matrix in the context of atherosclerosis.
    Reimann C; Brangsch J; Colletini F; Walter T; Hamm B; Botnar RM; Makowski MR
    Adv Drug Deliv Rev; 2017 Apr; 113():49-60. PubMed ID: 27639968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid crystals mechanically stimulate adjacent extracellular matrix in advanced atherosclerotic plaques.
    Lee ES; Park JH; Lee SW; Hahn J; Lee H; Chae SW; Lee TG; Moon DW; Kim SH
    Atherosclerosis; 2014 Dec; 237(2):769-76. PubMed ID: 25463119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different Approaches in Therapy Aiming to Stabilize an Unstable Atherosclerotic Plaque.
    Kowara M; Cudnoch-Jedrzejewska A
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33919446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular matrix: paving the way to the newest trends in atherosclerosis.
    Gialeli C; Shami A; Gonçalves I
    Curr Opin Lipidol; 2021 Oct; 32(5):277-285. PubMed ID: 34320563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atherosclerosis and extracellular matrix.
    Katsuda S; Kaji T
    J Atheroscler Thromb; 2003; 10(5):267-74. PubMed ID: 14718743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of MicroRNA-494 Reduces Carotid Artery Atherosclerotic Lesion Development and Increases Plaque Stability.
    Wezel A; Welten SM; Razawy W; Lagraauw HM; de Vries MR; Goossens EA; Boonstra MC; Hamming JF; Kandimalla ER; Kuiper J; Quax PH; Nossent AY; Bot I
    Ann Surg; 2015 Nov; 262(5):841-7; discussion 847-8. PubMed ID: 26583674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis.
    Singh D; Rai V; Agrawal DK
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling.
    Chen YC; Bui AV; Diesch J; Manasseh R; Hausding C; Rivera J; Haviv I; Agrotis A; Htun NM; Jowett J; Hagemeyer CE; Hannan RD; Bobik A; Peter K
    Circ Res; 2013 Jul; 113(3):252-65. PubMed ID: 23748430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability.
    Johnson JL
    Expert Rev Cardiovasc Ther; 2007 Mar; 5(2):265-82. PubMed ID: 17338671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of microRNA in Development of Instability of Atherosclerotic Plaques.
    Koroleva IA; Nazarenko MS; Kucher AN
    Biochemistry (Mosc); 2017 Nov; 82(11):1380-1390. PubMed ID: 29223165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular extracellular matrix in atherosclerosis.
    Chistiakov DA; Sobenin IA; Orekhov AN
    Cardiol Rev; 2013; 21(6):270-88. PubMed ID: 23422022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of connexin 37 expression by RNA interference decreases atherosclerotic plaque formation.
    Guo S; Zhu J; Yang Z; Feng J; Li K; Wang R; Yang X
    Mol Med Rep; 2015 Apr; 11(4):2664-70. PubMed ID: 25483389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of oncostatin-M in ECM remodeling and plaque vulnerability.
    Patel P; Rai V; Agrawal DK
    Mol Cell Biochem; 2023 Nov; 478(11):2451-2460. PubMed ID: 36856919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of altered extracellular matrix in surface layers of unstable carotid plaque: an optical spectroscopy, birefringence and microarray genetic analysis.
    Korol RM; Canham PB; Liu L; Viswanathan K; Ferguson GG; Hammond RR; Finlay HM; Baker HV; Lopez C; Lucas AR
    Photochem Photobiol; 2011; 87(5):1164-72. PubMed ID: 21699546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular matrix characterization in plaques from carotid endarterectomy by a proteomics approach.
    Ucciferri N; Rocchiccioli S; Comelli L; Marconi M; Ferrari M; Pelosi G; Cecchettini A
    Talanta; 2017 Nov; 174():341-346. PubMed ID: 28738590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.