These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28440887)

  • 21. Pioglitazone-Incorporated Nanoparticles Prevent Plaque Destabilization and Rupture by Regulating Monocyte/Macrophage Differentiation in ApoE-/- Mice.
    Nakashiro S; Matoba T; Umezu R; Koga J; Tokutome M; Katsuki S; Nakano K; Sunagawa K; Egashira K
    Arterioscler Thromb Vasc Biol; 2016 Mar; 36(3):491-500. PubMed ID: 26821947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plaque oxysterols induce unbalanced up-regulation of matrix metalloproteinase-9 in macrophagic cells through redox-sensitive signaling pathways: Implications regarding the vulnerability of atherosclerotic lesions.
    Gargiulo S; Sottero B; Gamba P; Chiarpotto E; Poli G; Leonarduzzi G
    Free Radic Biol Med; 2011 Aug; 51(4):844-55. PubMed ID: 21664966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability.
    Gargiulo S; Gamba P; Testa G; Rossin D; Biasi F; Poli G; Leonarduzzi G
    Aging Cell; 2015 Aug; 14(4):569-81. PubMed ID: 25757594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A unique microRNA signature associated with plaque instability in humans.
    Cipollone F; Felicioni L; Sarzani R; Ucchino S; Spigonardo F; Mandolini C; Malatesta S; Bucci M; Mammarella C; Santovito D; de Lutiis F; Marchetti A; Mezzetti A; Buttitta F
    Stroke; 2011 Sep; 42(9):2556-63. PubMed ID: 21817153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of interleukin-18 in destabilization of the atherosclerotic plaque in humans.
    Pigarevskii PV; Maltseva SV; Snegova VA; Davydova NG
    Bull Exp Biol Med; 2014 Oct; 157(6):821-4. PubMed ID: 25342490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atherosclerotic Plaque Destabilization in Mice: A Comparative Study.
    Hartwig H; Silvestre-Roig C; Hendrikse J; Beckers L; Paulin N; Van der Heiden K; Braster Q; Drechsler M; Daemen MJ; Lutgens E; Soehnlein O
    PLoS One; 2015; 10(10):e0141019. PubMed ID: 26492161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mast cells and degradation of pericellular and extracellular matrices: potential contributions to erosion, rupture and intraplaque haemorrhage of atherosclerotic plaques.
    Kovanen PT
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):857-61. PubMed ID: 17956232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells.
    Gupta V; Grande-Allen KJ
    Cardiovasc Res; 2006 Dec; 72(3):375-83. PubMed ID: 17010955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How do we prevent the vulnerable atherosclerotic plaque from rupturing? Insights from in vivo assessments of plaque, vascular remodeling, and local endothelial shear stress.
    Andreou I; Antoniadis AP; Shishido K; Papafaklis MI; Koskinas KC; Chatzizisis YS; Coskun AU; Edelman ER; Feldman CL; Stone PH
    J Cardiovasc Pharmacol Ther; 2015 May; 20(3):261-75. PubMed ID: 25336461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thrombosis formation on atherosclerotic lesions and plaque rupture.
    Badimon L; Vilahur G
    J Intern Med; 2014 Dec; 276(6):618-32. PubMed ID: 25156650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CXCL16 in Vascular Pathology Research: from Macro Effects to microRNAs.
    Jovanović I; Zivković M; Djurić T; Popović M; Alavantić D; Stanković A
    J Atheroscler Thromb; 2015; 22(10):1012-24. PubMed ID: 26289084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extracellular matrix components in atherosclerotic arteries of Apo E/LDL receptor deficient mice: an immunohistochemical study.
    Ström A; Ahlqvist E; Franzén A; Heinegård D; Hultgårdh-Nilsson A
    Histol Histopathol; 2004 Apr; 19(2):337-47. PubMed ID: 15024695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Connective tissue growth factor is associated with a stable atherosclerotic plaque phenotype and is involved in plaque stabilization after stroke.
    Leeuwis JW; Nguyen TQ; Theunissen MG; Peeters W; Goldschmeding R; Pasterkamp G; Vink A
    Stroke; 2010 Dec; 41(12):2979-81. PubMed ID: 20966418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene expression levels of matrix metalloproteinases in human atherosclerotic plaques and evaluation of radiolabeled inhibitors as imaging agents for plaque vulnerability.
    Müller A; Krämer SD; Meletta R; Beck K; Selivanova SV; Rancic Z; Kaufmann PA; Vos B; Meding J; Stellfeld T; Heinrich TK; Bauser M; Hütter J; Dinkelborg LM; Schibli R; Ametamey SM
    Nucl Med Biol; 2014 Aug; 41(7):562-9. PubMed ID: 24853402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies.
    Silvestre-Roig C; de Winther MP; Weber C; Daemen MJ; Lutgens E; Soehnlein O
    Circ Res; 2014 Jan; 114(1):214-26. PubMed ID: 24385514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Matrix metalloproteinases and atherogenesis in dependence of age.
    Kunz J
    Gerontology; 2007; 53(2):63-73. PubMed ID: 17047333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unique MicroRNA signatures associated with early coronary atherosclerotic plaques.
    Wang R; Dong LD; Meng XB; Shi Q; Sun WY
    Biochem Biophys Res Commun; 2015 Aug; 464(2):574-9. PubMed ID: 26159918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. miRNAs in atherosclerotic plaque initiation, progression, and rupture.
    Andreou I; Sun X; Stone PH; Edelman ER; Feinberg MW
    Trends Mol Med; 2015 May; 21(5):307-18. PubMed ID: 25771097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metalloproteinases promote plaque rupture and myocardial infarction: A persuasive concept waiting for clinical translation.
    Newby AC
    Matrix Biol; 2015; 44-46():157-66. PubMed ID: 25636537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased proteolytic cleavage of osteoglycin is associated with a stable plaque phenotype and lower risk of cardiovascular events.
    Al-Sharify D; Nielsen SH; Matthes F; Tengryd C; Sun J; Genovese F; Karsdal MA; Nilsson J; Goncalves I; Edsfeldt A
    Atherosclerosis; 2022 Aug; 355():8-14. PubMed ID: 35850021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.