These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28440957)

  • 1. The role of high-throughput screening in ecotoxicology and engineered nanomaterials.
    Barrick A; Châtel A; Bruneau M; Mouneyrac C
    Environ Toxicol Chem; 2017 Jul; 36(7):1704-1714. PubMed ID: 28440957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomaterials in the environment: from materials to high-throughput screening to organisms.
    Thomas CR; George S; Horst AM; Ji Z; Miller RJ; Peralta-Videa JR; Xia T; Pokhrel S; Mädler L; Gardea-Torresdey JL; Holden PA; Keller AA; Lenihan HS; Nel AE; Zink JI
    ACS Nano; 2011 Jan; 5(1):13-20. PubMed ID: 21261306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials.
    Liu Q; Wang X; Xia T
    Anal Bioanal Chem; 2018 Sep; 410(24):6097-6111. PubMed ID: 30066194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive value of the ToxCast/Tox21 high throughput toxicity screening data for approximating in vivo ecotoxicity endpoints and ecotoxicological risk in eco- surveillance applications.
    Rodea-Palomares I; Bone AJ
    Sci Total Environ; 2024 Mar; 914():169783. PubMed ID: 38184261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening.
    Nel A; Xia T; Meng H; Wang X; Lin S; Ji Z; Zhang H
    Acc Chem Res; 2013 Mar; 46(3):607-21. PubMed ID: 22676423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput toxicity screening and intracellular detection of nanomaterials.
    Collins AR; Annangi B; Rubio L; Marcos R; Dorn M; Merker C; Estrela-Lopis I; Cimpan MR; Ibrahim M; Cimpan E; Ostermann M; Sauter A; Yamani NE; Shaposhnikov S; Chevillard S; Paget V; Grall R; Delic J; de-Cerio FG; Suarez-Merino B; Fessard V; Hogeveen KN; Fjellsbø LM; Pran ER; Brzicova T; Topinka J; Silva MJ; Leite PE; Ribeiro AR; Granjeiro JM; Grafström R; Prina-Mello A; Dusinska M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Jan; 9(1):. PubMed ID: 27273980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The OECD expert meeting on ecotoxicology and environmental fate--towards the development of improved OECD guidelines for the testing of nanomaterials.
    Kühnel D; Nickel C
    Sci Total Environ; 2014 Feb; 472():347-53. PubMed ID: 24461369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic efficiency predicts toxic effects of metal nanomaterials in phytoplankton.
    Miller RJ; Muller EB; Cole B; Martin T; Nisbet R; Bielmyer-Fraser GK; Jarvis TA; Keller AA; Cherr G; Lenihan HS
    Aquat Toxicol; 2017 Feb; 183():85-93. PubMed ID: 28039777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing ecotoxicological effect concentrations of chemicals established in multi-species vs. single-species toxicity test systems.
    De Laender F; De Schamphelaere KA; Vanrolleghem PA; Janssen CR
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):310-5. PubMed ID: 18774172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles.
    Hund-Rinke K; Baun A; Cupi D; Fernandes TF; Handy R; Kinross JH; Navas JM; Peijnenburg W; Schlich K; Shaw BJ; Scott-Fordsmand JJ
    Nanotoxicology; 2016 Dec; 10(10):1442-1447. PubMed ID: 27592624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review.
    Lead JR; Batley GE; Alvarez PJJ; Croteau MN; Handy RD; McLaughlin MJ; Judy JD; Schirmer K
    Environ Toxicol Chem; 2018 Aug; 37(8):2029-2063. PubMed ID: 29633323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The US Federal Tox21 Program: A strategic and operational plan for continued leadership.
    Thomas RS; Paules RS; Simeonov A; Fitzpatrick SC; Crofton KM; Casey WM; Mendrick DL
    ALTEX; 2018; 35(2):163-168. PubMed ID: 29529324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the Impact of Manufacturing Processes on the Ecotoxicity of Carbon Nanofibers: A Multi-Aquatic Species Comparison.
    Barrick A; Châtel A; Manier N; Kalman J; Navas JM; Mouneyrac C
    Environ Toxicol Chem; 2019 Oct; 38(10):2314-2325. PubMed ID: 31343769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances.
    Coady KK; Biever RC; Denslow ND; Gross M; Guiney PD; Holbech H; Karouna-Renier NK; Katsiadaki I; Krueger H; Levine SL; Maack G; Williams M; Wolf JC; Ankley GT
    Integr Environ Assess Manag; 2017 Mar; 13(2):302-316. PubMed ID: 27791330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth-Based Bacterial Viability Assay for Interference-Free and High-Throughput Toxicity Screening of Nanomaterials.
    Qiu TA; Nguyen TH; Hudson-Smith NV; Clement PL; Forester DC; Frew H; Hang MN; Murphy CJ; Hamers RJ; Feng ZV; Haynes CL
    Anal Chem; 2017 Feb; 89(3):2057-2064. PubMed ID: 28208291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of physicochemical properties of nanomaterials and their immediate environments in high-throughput screening of nanomaterial biological activity.
    Wang A; Marinakos SM; Badireddy AR; Powers CM; Houck KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(5):430-48. PubMed ID: 23661551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling.
    Lubinski L; Urbaszek P; Gajewicz A; Cronin MT; Enoch SJ; Madden JC; Leszczynska D; Leszczynski J; Puzyn T
    SAR QSAR Environ Res; 2013; 24(12):995-1008. PubMed ID: 24313439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform.
    Hur J; Danes L; Hsieh JH; McGregor B; Krout D; Auerbach S
    Mol Inform; 2018 May; 37(5):e1700129. PubMed ID: 29377626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.