BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1366 related articles for article (PubMed ID: 28441057)

  • 1. Oxidative Stress.
    Sies H; Berndt C; Jones DP
    Annu Rev Biochem; 2017 Jun; 86():715-748. PubMed ID: 28441057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia.
    Chiou YS; Huang Q; Ho CT; Wang YJ; Pan MH
    Free Radic Biol Med; 2016 May; 94():1-16. PubMed ID: 26878775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress.
    Sies H
    Redox Biol; 2017 Apr; 11():613-619. PubMed ID: 28110218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis.
    Stępkowski TM; Kruszewski MK
    Free Radic Biol Med; 2011 May; 50(9):1186-95. PubMed ID: 21295136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nrf2-Keap1 signaling in oxidative and reductive stress.
    Bellezza I; Giambanco I; Minelli A; Donato R
    Biochim Biophys Acta Mol Cell Res; 2018 May; 1865(5):721-733. PubMed ID: 29499228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells.
    Wu Q; Yao B; Li N; Ma L; Deng Y; Yang Y; Zeng C; Yang Z; Liu B
    Exp Cell Res; 2017 Mar; 352(2):245-254. PubMed ID: 28196727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nrf2 is activated by disruption of mitochondrial thiol homeostasis but not by enhanced mitochondrial superoxide production.
    Cvetko F; Caldwell ST; Higgins M; Suzuki T; Yamamoto M; Prag HA; Hartley RC; Dinkova-Kostova AT; Murphy MP
    J Biol Chem; 2021; 296():100169. PubMed ID: 33298526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of Nrf2 in Ocular Diseases.
    Batliwala S; Xavier C; Liu Y; Wu H; Pang IH
    Oxid Med Cell Longev; 2017; 2017():1703810. PubMed ID: 28473877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Selenium compounds in redox regulation of inflammation and apoptosis].
    Rusetskaya NY; Fedotov IV; Koftina VA; Borodulin VB
    Biomed Khim; 2019 Apr; 65(3):165-179. PubMed ID: 31258141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of metabolic H2O2 generation: redox signaling and oxidative stress.
    Sies H
    J Biol Chem; 2014 Mar; 289(13):8735-41. PubMed ID: 24515117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H2O2-dependent activation of GCLC-ARE4 reporter occurs by mitogen-activated protein kinase pathways without oxidation of cellular glutathione or thioredoxin-1.
    Go YM; Gipp JJ; Mulcahy RT; Jones DP
    J Biol Chem; 2004 Feb; 279(7):5837-45. PubMed ID: 14638694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lymphocyte levels of redox-sensitive transcription factors and antioxidative enzymes as indicators of pro-oxidative state in depressive patients.
    Lukic I; Mitic M; Djordjevic J; Tatalovic N; Bozovic N; Soldatovic I; Mihaljevic M; Pavlovic Z; Radojcic MB; Maric NP; Adzic M
    Neuropsychobiology; 2014; 70(1):1-9. PubMed ID: 25170744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms involved in the unbalanced redox homeostasis in osteoblastic cellular model of Alkaptonuria.
    Schiavone ML; Pecorelli A; Woodby B; Ferrara F; Pambianchi E; Santucci A; Valacchi G
    Arch Biochem Biophys; 2020 Sep; 690():108416. PubMed ID: 32502471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway.
    Cheng X; Siow RC; Mann GE
    Antioxid Redox Signal; 2011 Feb; 14(3):469-87. PubMed ID: 20524845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen sulfide attenuates calcification of vascular smooth muscle cells via KEAP1/NRF2/NQO1 activation.
    Aghagolzadeh P; Radpour R; Bachtler M; van Goor H; Smith ER; Lister A; Odermatt A; Feelisch M; Pasch A
    Atherosclerosis; 2017 Oct; 265():78-86. PubMed ID: 28865326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of deficiency of Kelch-like ECH-associated protein 1 on skeletal organization: a mechanism for diminished nuclear factor of activated T cells cytoplasmic 1 during osteoclastogenesis.
    Sakai E; Morita M; Ohuchi M; Kido MA; Fukuma Y; Nishishita K; Okamoto K; Itoh K; Yamamoto M; Tsukuba T
    FASEB J; 2017 Sep; 31(9):4011-4022. PubMed ID: 28515152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant responses and cellular adjustments to oxidative stress.
    Espinosa-Diez C; Miguel V; Mennerich D; Kietzmann T; Sánchez-Pérez P; Cadenas S; Lamas S
    Redox Biol; 2015 Dec; 6():183-197. PubMed ID: 26233704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effect of low molecular-weight seleno-aminopolysaccharides against H
    Wen ZS; Ma L; Xiang XW; Tang Z; Guan RF; Qu YL
    Int J Biol Macromol; 2018 Jun; 112():745-753. PubMed ID: 29410059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 69.