These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28441501)

  • 1. Hooked on Cryogels: A Carbamate Linker Based Depot for Slow Drug Release.
    Aydin D; Arslan M; Sanyal A; Sanyal R
    Bioconjug Chem; 2017 May; 28(5):1443-1451. PubMed ID: 28441501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focal drug administration via heparin-containing cryogel microcarriers reduces cancer growth and metastasis.
    Newland B; Varricchio C; Körner Y; Hoppe F; Taplan C; Newland H; Eigel D; Tornillo G; Pette D; Brancale A; Welzel PB; Seib FP; Werner C
    Carbohydr Polym; 2020 Oct; 245():116504. PubMed ID: 32718615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart Macroporous IPN Hydrogels Responsive to pH, Temperature, and Ionic Strength: Synthesis, Characterization, and Evaluation of Controlled Release of Drugs.
    Dragan ES; Cocarta AI
    ACS Appl Mater Interfaces; 2016 May; 8(19):12018-30. PubMed ID: 27115698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cleavable carbamate linkers for controlled protein delivery from hydrogels.
    Hammer N; Brandl FP; Kirchhof S; Goepferich AM
    J Control Release; 2014 Jun; 183():67-76. PubMed ID: 24680687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of fabrication conditions of acrylate-based hydrogel formulations for doxorubicin release and efficacy test for hepatocellular carcinoma cell.
    Bayramoglu G; Gozen D; Ersoy G; Ozalp VC; Akcali KC; Arica MY
    J Biomater Sci Polym Ed; 2014; 25(7):657-78. PubMed ID: 24580096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable and biocompatible alginate-derived porous hydrogels cross-linked by IEDDA click chemistry for reduction-responsive drug release application.
    Vu TT; Gulfam M; Jo SH; Park SH; Lim KT
    Carbohydr Polym; 2022 Feb; 278():118964. PubMed ID: 34973779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dextran-polyethylene glycol cryogels as spongy scaffolds for drug delivery.
    Pacelli S; Di Muzio L; Paolicelli P; Fortunati V; Petralito S; Trilli J; Casadei MA
    Int J Biol Macromol; 2021 Jan; 166():1292-1300. PubMed ID: 33161086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels.
    Kang GD; Cheon SH; Song SC
    Int J Pharm; 2006 Aug; 319(1-2):29-36. PubMed ID: 16677786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor Cell Behavior in Porous Hydrogels: Effect of Application Technique and Doxorubicin Treatment.
    Zoughaib MH; Luong DT; Siraeva ZY; Yergeshov AA; Salikhova TI; Kuznetsova SV; Kiyamova RG; Abdullin TI
    Bull Exp Biol Med; 2019 Aug; 167(4):590-598. PubMed ID: 31502133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anionic carboxymethylagarose-based pH-responsive smart superabsorbent hydrogels for controlled release of anticancer drug.
    Khan H; Chaudhary JP; Meena R
    Int J Biol Macromol; 2019 Mar; 124():1220-1229. PubMed ID: 30529202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-Reactive Clickable Cryogels: Importance of Macroporosity and Linkers on Biomolecular Immobilization.
    Chambre L; Maouati H; Oz Y; Sanyal R; Sanyal A
    Bioconjug Chem; 2020 Sep; 31(9):2116-2124. PubMed ID: 32786374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro release behavior of dextran-methacrylate hydrogels using doxorubicin and other model compounds.
    Kim SH; Chu CC
    J Biomater Appl; 2000 Jul; 15(1):23-46. PubMed ID: 10972158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications.
    Sharma A; Bhat S; Nayak V; Kumar A
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular design of peptide amphiphiles for controlled self-assembly and drug release.
    Liu Z; Tang X; Feng F; Xu J; Wu C; Dai G; Yue W; Zhong W; Xu K
    J Mater Chem B; 2021 Apr; 9(15):3326-3334. PubMed ID: 33881438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds.
    Shirbin SJ; Karimi F; Chan NJ; Heath DE; Qiao GG
    Biomacromolecules; 2016 Sep; 17(9):2981-91. PubMed ID: 27472153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-Responsive "Catch and Release" Cryogels: A Versatile Platform for Capture and Release of Proteins and Cells.
    Calik F; Degirmenci A; Maouati H; Sanyal R; Sanyal A
    ACS Biomater Sci Eng; 2024 May; 10(5):3017-3028. PubMed ID: 38655791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies of polyethylenimine-doxorubicin conjugates with pH-sensitive and pH-insensitive linkers.
    Dong DW; Tong SW; Qi XR
    J Biomed Mater Res A; 2013 May; 101(5):1336-44. PubMed ID: 23065848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of oxidized starch/poly(N,N-dimethylaminoethyl methacrylate) semi-IPN cryogels and in vitro controlled release evaluation of indomethacin.
    Apopei Loghin DF; Biliuta G; Coseri S; Dragan ES
    Int J Biol Macromol; 2017 Mar; 96():589-599. PubMed ID: 28041916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor-preferential sustained drug release enhances antitumor activity of block copolymer micelles.
    Ponta A; Bae Y
    J Drug Target; 2014 Aug; 22(7):619-28. PubMed ID: 24766185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.