BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28441518)

  • 1. Learning to allocate limited time to decisions with different expected outcomes.
    Khodadadi A; Fakhari P; Busemeyer JR
    Cogn Psychol; 2017 Jun; 95():17-49. PubMed ID: 28441518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning to maximize reward rate: a model based on semi-Markov decision processes.
    Khodadadi A; Fakhari P; Busemeyer JR
    Front Neurosci; 2014; 8():101. PubMed ID: 24904252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based reinforcement learning under concurrent schedules of reinforcement in rodents.
    Huh N; Jo S; Kim H; Sul JH; Jung MW
    Learn Mem; 2009 May; 16(5):315-23. PubMed ID: 19403794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of learning on perceptual decisions and its implication for speed-accuracy tradeoffs.
    Mendonça AG; Drugowitsch J; Vicente MI; DeWitt EEJ; Pouget A; Mainen ZF
    Nat Commun; 2020 Jun; 11(1):2757. PubMed ID: 32488065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: a meta-analytical approach using diffusion decision modeling.
    Fontanesi L; Palminteri S; Lebreton M
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):490-502. PubMed ID: 31175616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-Benefit Arbitration Between Multiple Reinforcement-Learning Systems.
    Kool W; Gershman SJ; Cushman FA
    Psychol Sci; 2017 Sep; 28(9):1321-1333. PubMed ID: 28731839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mathematical models of decision making and learning].
    Ito M; Doya K
    Brain Nerve; 2008 Jul; 60(7):791-8. PubMed ID: 18646619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming indecision by changing the decision boundary.
    Malhotra G; Leslie DS; Ludwig CJH; Bogacz R
    J Exp Psychol Gen; 2017 Jun; 146(6):776-805. PubMed ID: 28406682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different effects of dopaminergic medication on perceptual decision-making in Parkinson's disease as a function of task difficulty and speed-accuracy instructions.
    Huang YT; Georgiev D; Foltynie T; Limousin P; Speekenbrink M; Jahanshahi M
    Neuropsychologia; 2015 Aug; 75():577-87. PubMed ID: 26184442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling sensory-motor decisions in natural behavior.
    Zhang R; Zhang S; Tong MH; Cui Y; Rothkopf CA; Ballard DH; Hayhoe MM
    PLoS Comput Biol; 2018 Oct; 14(10):e1006518. PubMed ID: 30359364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Try and try again: Post-error boost of an implicit measure of agency.
    Di Costa S; Théro H; Chambon V; Haggard P
    Q J Exp Psychol (Hove); 2018 Jul; 71(7):1584-1595. PubMed ID: 28697690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The drift diffusion model as the choice rule in reinforcement learning.
    Pedersen ML; Frank MJ; Biele G
    Psychon Bull Rev; 2017 Aug; 24(4):1234-1251. PubMed ID: 27966103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost-benefit trade-offs in decision-making and learning.
    Sidarus N; Palminteri S; Chambon V
    PLoS Comput Biol; 2019 Sep; 15(9):e1007326. PubMed ID: 31490934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement-based decision making in corticostriatal circuits: mutual constraints by neurocomputational and diffusion models.
    Ratcliff R; Frank MJ
    Neural Comput; 2012 May; 24(5):1186-229. PubMed ID: 22295983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the time for accurate EEG decoding of single value-based decisions.
    Tzovara A; Chavarriaga R; De Lucia M
    J Neurosci Methods; 2015 Jul; 250():114-25. PubMed ID: 25291525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do humans produce the speed-accuracy trade-off that maximizes reward rate?
    Bogacz R; Hu PT; Holmes PJ; Cohen JD
    Q J Exp Psychol (Hove); 2010 May; 63(5):863-91. PubMed ID: 19746300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal dynamics of prediction error processing during reward-based decision making.
    Philiastides MG; Biele G; Vavatzanidis N; Kazzer P; Heekeren HR
    Neuroimage; 2010 Oct; 53(1):221-32. PubMed ID: 20510376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning-related changes in brain activity following errors and performance feedback in schizophrenia.
    Morris SE; Heerey EA; Gold JM; Holroyd CB
    Schizophr Res; 2008 Feb; 99(1-3):274-85. PubMed ID: 17889510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning.
    Haruno M; Kawato M
    J Neurophysiol; 2006 Feb; 95(2):948-59. PubMed ID: 16192338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.