These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28441594)

  • 21. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity.
    Godinez IG; Darnault CJ
    Water Res; 2011 Jan; 45(2):839-51. PubMed ID: 20947120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability and aggregation of nanoscale titanium dioxide particle (nTiO
    Tang Z; Cheng T
    Chemosphere; 2018 Feb; 192():51-58. PubMed ID: 29091797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cotransport of fullerene nanoparticles and montmorillonite colloids in porous media: Critical role of divalent cations of montmorillonite.
    Zhan W; Zhao X; Zhong H; Liu G
    Sci Total Environ; 2024 Feb; 912():169470. PubMed ID: 38135086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attachment of bacteriophages MS2 and ΦX174 onto kaolinite and montmorillonite: extended-DLVO interactions.
    Chrysikopoulos CV; Syngouna VI
    Colloids Surf B Biointerfaces; 2012 Apr; 92():74-83. PubMed ID: 22153836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the co-transport of viruses and colloids in unsaturated porous media.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S
    J Contam Hydrol; 2015 Oct; 181():82-101. PubMed ID: 25681069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling dense-colloid and virus cotransport in three-dimensional porous media.
    Katzourakis VE; Chrysikopoulos CV
    J Contam Hydrol; 2015 Oct; 181():102-13. PubMed ID: 26071628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport of biocolloids in water saturated columns packed with sand: Effect of grain size and pore water velocity.
    Syngouna VI; Chrysikopoulos CV
    J Contam Hydrol; 2011 Nov; 126(3-4):301-14. PubMed ID: 22115094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retention and release of TiO2 nanoparticles in unsaturated porous media during dynamic saturation change.
    Chen L; Sabatini DA; Kibbey TC
    J Contam Hydrol; 2010 Nov; 118(3-4):199-207. PubMed ID: 20739092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different roles of silica nanoparticles played in virus transport in saturated and unsaturated porous media.
    Qin Y; Wen Z; Zhang W; Chai J; Liu D; Wu S
    Environ Pollut; 2020 Apr; 259():113861. PubMed ID: 31918138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport of Human Adenoviruses in Water Saturated Laboratory Columns.
    Kokkinos P; Syngouna VI; Tselepi MA; Bellou M; Chrysikopoulos CV; Vantarakis A
    Food Environ Virol; 2015 Jan; ():. PubMed ID: 25578176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Significance of non-DLVO interactions on the co-transport of levofloxacin and titanium dioxide nanoparticles in porous media.
    Cui Y; Wu M; Lu G; Cheng Z; Chen M; Hao Y; Mo C; Li Q; Wu J; Wu J; Hu BX
    Environ Pollut; 2024 Jun; 351():124079. PubMed ID: 38692390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.
    Torkzaban S; Bradford SA; Vanderzalm JL; Patterson BM; Harris B; Prommer H
    J Contam Hydrol; 2015 Oct; 181():161-71. PubMed ID: 26141344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.
    Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y
    J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks.
    Bayat AE; Junin R; Shamshirband S; Chong WT
    Sci Rep; 2015 Sep; 5():14264. PubMed ID: 26373598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.
    Cai L; Tong M; Wang X; Kim H
    Environ Sci Technol; 2014 Jul; 48(13):7323-32. PubMed ID: 24911544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity.
    Compère F; Porel G; Delay F
    J Contam Hydrol; 2001 May; 49(1-2):1-21. PubMed ID: 11351511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand.
    Guo P; Xu N; Li D; Huangfu X; Li Z
    Chemosphere; 2018 Aug; 204():327-334. PubMed ID: 29674144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacteriophage MS2 and titanium dioxide heteroaggregation: Effects of ambient light and the presence of quartz sand.
    Syngouna VI; Chrysikopoulos CV
    Colloids Surf B Biointerfaces; 2019 Aug; 180():281-288. PubMed ID: 31063885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A two-way coupled model for the co-transport of two different colloids in porous media.
    Seetha N; Hassanizadeh SM
    J Contam Hydrol; 2022 Jan; 244():103922. PubMed ID: 34864473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of tailing colloid from vanadium-titanium magnetite in the adsorption and cotransport with vanadium.
    Huang Y; Zhou D; Wang L; Jiao G; Gou H; Li Z; Zhang G
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):34069-34084. PubMed ID: 36504302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.