These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28441597)

  • 1. Differences in nitrate and phosphorus export between wooded and grassed riparian zones from farmland to receiving waterways under varying rainfall conditions.
    Neilen AD; Chen CR; Parker BM; Faggotter SJ; Burford MA
    Sci Total Environ; 2017 Nov; 598():188-197. PubMed ID: 28441597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotic and abiotic controls on nitrogen leaching losses into waterways during successive bovine urine application to soil.
    Neilen AD; Chen CR; Faggotter SJ; Ellison TL; Burford MA
    J Environ Manage; 2016 Jul; 176():11-20. PubMed ID: 27031296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant source and soil interact to determine characteristics of dissolved organic matter leached into waterways from riparian leaf litter.
    Franklin HM; Carroll AR; Chen C; Maxwell P; Burford MA
    Sci Total Environ; 2020 Feb; 703():134530. PubMed ID: 31757551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-native earthworms in riparian soils increase nitrogen flux into adjacent aquatic ecosystems.
    Costello DM; Lamberti GA
    Oecologia; 2008 Dec; 158(3):499-510. PubMed ID: 18825416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land.
    Fortier J; Truax B; Gagnon D; Lambert F
    J Environ Manage; 2015 May; 154():333-45. PubMed ID: 25753395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controls on denitrification potential in nitrate-rich waterways and riparian zones of an irrigated agricultural setting.
    Webster AJ; Groffman PM; Cadenasso ML
    Ecol Appl; 2018 Jun; 28(4):1055-1067. PubMed ID: 29465768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vegetation Type Does not Affect Nitrous Oxide Emissions from Riparian Zones in Agricultural Landscapes.
    Baskerville M; Reddy N; Ofosu E; Thevathasan NV; Oelbermann M
    Environ Manage; 2021 Feb; 67(2):371-383. PubMed ID: 33462678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urban runoff and stream channel incision interact to influence riparian soils and understory vegetation.
    Solins JP; Cadenasso ML
    Ecol Appl; 2022 Jun; 32(4):e2556. PubMed ID: 35112753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions.
    Liu R; Wang J; Shi J; Chen Y; Sun C; Zhang P; Shen Z
    Sci Total Environ; 2014 Jan; 468-469():1069-77. PubMed ID: 24095969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient leaching from mixed-species Florida residential landscapes.
    Qin Z; Shober AL; Beeson RC; Wiese C
    J Environ Qual; 2013 Sep; 42(5):1534-44. PubMed ID: 24216431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water pulses and biogeochemical cycles in arid and semiarid ecosystems.
    Austin AT; Yahdjian L; Stark JM; Belnap J; Porporato A; Norton U; Ravetta DA; Schaeffer SM
    Oecologia; 2004 Oct; 141(2):221-35. PubMed ID: 14986096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial-seasonal variation of soil denitrification under three riparian vegetation types around the Dianchi Lake in Yunnan, China.
    Wang S; Cao Z; Li X; Liao Z; Hu B; Ni J; Ruan H
    Environ Sci Process Impacts; 2013 May; 15(5):963-71. PubMed ID: 23525252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating nitrogen removal by vegetation uptake using satellite image time series in riparian catchments.
    Wang X; Wang Q; Yang S; Zheng D; Wu C; Mannaerts CM
    Sci Total Environ; 2011 Jun; 409(13):2567-76. PubMed ID: 21496878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denitrification along the Stream-Riparian Continuum in Restored and Unrestored Agricultural Streams.
    Welsh MK; McMillan SK; Vidon PG
    J Environ Qual; 2017 Sep; 46(5):1010-1019. PubMed ID: 28991981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and role of seeded native grasses to immobilize nitrogen on harvested blanket peat forests for protection of water courses.
    Asam ZU; O'Driscoll C; Abbas M; O'Connor M; Waqas M; Rehan M; Nizami AS; Xiao L
    Environ Sci Pollut Res Int; 2021 May; 28(19):24756-24770. PubMed ID: 33156503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of hydrologic connectivity between hillslopes and riparian zones on streamflow composition.
    von Freyberg J; Radny D; Gall HE; Schirmer M
    J Contam Hydrol; 2014 Nov; 169():62-74. PubMed ID: 25106837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of nitrogen pools and processes in degraded riparian zones in the southern appalachians.
    Walker JT; Vose JM; Knoepp J; Geron CD
    J Environ Qual; 2009; 38(4):1391-9. PubMed ID: 19465714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of poplar trees on nitrogen and water balance in outdoor pig production - A case study in Denmark.
    Manevski K; Jakobsen M; Kongsted AG; Georgiadis P; Labouriau R; Hermansen JE; Jørgensen U
    Sci Total Environ; 2019 Jan; 646():1448-1458. PubMed ID: 30235630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus leaching from riparian soils with differing management histories under three grass species.
    Roberts WM; George TS; Stutter MI; Louro A; Ali M; Haygarth PM
    J Environ Qual; 2020 Jan; 49(1):74-84. PubMed ID: 33016354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrate reduction in the reed rhizosphere of a riparian zone: From functional genes to activity and contribution.
    Wang S; Pi Y; Jiang Y; Pan H; Wang X; Wang X; Zhou J; Zhu G
    Environ Res; 2020 Jan; 180():108867. PubMed ID: 31708170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.