These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28441732)

  • 1. Modified Nucleotides as Substrates of Terminal Deoxynucleotidyl Transferase.
    Tauraitė D; Jakubovska J; Dabužinskaitė J; Bratchikov M; Meškys R
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28441732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids.
    Sarac I; Hollenstein M
    Chembiochem; 2019 Apr; 20(7):860-871. PubMed ID: 30451377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Terminal Deoxynucleotidyl Transferase Activity on Substrates with 3' Terminal Structures for Enzymatic De Novo DNA Synthesis.
    Barthel S; Palluk S; Hillson NJ; Keasling JD; Arlow DH
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31963235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolving a Thermostable Terminal Deoxynucleotidyl Transferase.
    Chua JPS; Go MK; Osothprarop T; Mcdonald S; Karabadzhak AG; Yew WS; Peisajovich S; Nirantar S
    ACS Synth Biol; 2020 Jul; 9(7):1725-1735. PubMed ID: 32497424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of S-geranyl-2-thiouracil modified oligonucleotides with alkyl amines leads to the N2-alkyl isocytosine derivatives.
    Leszczynska G; Sadowska K; Sierant M; Sobczak M; Nawrot B; Sochacka E
    Org Biomol Chem; 2017 Jun; 15(25):5332-5336. PubMed ID: 28617513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic Preparation of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase and Its Applications.
    Wang G; Du Y; Chen T
    Methods Mol Biol; 2024; 2760():133-145. PubMed ID: 38468086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of Terminal Deoxynucleotidyl Transferase Enzyme in Biotechnology.
    Ashley J; Potts IG; Olorunniji FJ
    Chembiochem; 2023 Mar; 24(5):e202200510. PubMed ID: 36342345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic synthesis of fluorescent oligomers assembled on a DNA backbone.
    Cho Y; Kool ET
    Chembiochem; 2006 Apr; 7(4):669-72. PubMed ID: 16502476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-Independent Enzymatic Oligonucleotide Synthesis (TiEOS): Its History, Prospects, and Challenges.
    Jensen MA; Davis RW
    Biochemistry; 2018 Mar; 57(12):1821-1832. PubMed ID: 29533604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic Synthesis of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase.
    Wang G; He C; Zou J; Liu J; Du Y; Chen T
    ACS Synth Biol; 2022 Dec; 11(12):4142-4155. PubMed ID: 36455255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence Preference and Initiator Promiscuity for
    Schaudy E; Lietard J; Somoza MM
    ACS Synth Biol; 2021 Jul; 10(7):1750-1760. PubMed ID: 34156829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo DNA synthesis using polymerase-nucleotide conjugates.
    Palluk S; Arlow DH; de Rond T; Barthel S; Kang JS; Bector R; Baghdassarian HM; Truong AN; Kim PW; Singh AK; Hillson NJ; Keasling JD
    Nat Biotechnol; 2018 Aug; 36(7):645-650. PubMed ID: 29912208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic synthesis and modification of high molecular weight DNA using terminal deoxynucleotidyl transferase.
    Deshpande S; Yang Y; Chilkoti A; Zauscher S
    Methods Enzymol; 2019; 627():163-188. PubMed ID: 31630739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent xDNA nucleotides as efficient substrates for a template-independent polymerase.
    Jarchow-Choy SK; Krueger AT; Liu H; Gao J; Kool ET
    Nucleic Acids Res; 2011 Mar; 39(4):1586-94. PubMed ID: 20947563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of the new nucleoside 5'-alpha-iminophosphates using Staudinger reaction.
    Vasilyeva SV; Kuznetsova AA; Baranovskaya EE; Kuznetsov NA; Lomzov AA; Pyshnyi DV
    Bioorg Chem; 2022 Oct; 127():105987. PubMed ID: 35777231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel nucleoside triphosphate analogs for the enzymatic labeling of nucleic acids.
    Barone AD; Chen C; McGall GH; Rafii K; Buzby PR; Dimeo JJ
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):1141-5. PubMed ID: 11562974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel enzymatic single-nucleotide modification of DNA oligomer: prevention of incessant incorporation of nucleotidyl transferase by ribonucleotide-borate complex.
    Jang EK; Son RG; Pack SP
    Nucleic Acids Res; 2019 Sep; 47(17):e102. PubMed ID: 31318972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ grown DNA nanotail-templated silver nanoclusters enabling label-free electrochemical sensing of terminal deoxynucleotidyl transferase activity.
    Hu Y; Zhang Q; Guo Z; Wang S; Du C; Zhai C
    Biosens Bioelectron; 2017 Dec; 98():91-99. PubMed ID: 28662471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic addition of modified cytosine nucleotides to DNA. Methacrylate polymerization by an azo pyrimidine.
    Brown GL; Hartman RF; Rose SD
    Biochim Biophys Acta; 1980 Jul; 608(2):266-76. PubMed ID: 7397185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Structure-functional analysis of interactions of terminal deoxynucleotidyl transferase with new non-nucleoside substrates].
    Matyugina ES; Alexandrova LA; Jas'ko MV; Ivanov AV; Vasil'ev IA; Lapteva VL; Khandazhinskaya AL; Kukhanova MK
    Bioorg Khim; 2009; 35(3):376-83. PubMed ID: 19621053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.