BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28442244)

  • 1. Automatic high-resolution infarct detection using volumetric multiphase dual-energy CT.
    Sandfort V; Kwan AC; Elumogo C; Vigneault DM; Symons R; Pourmorteza A; Rice K; Davies-Venn C; Ahlman MA; Liu CY; Zimmerman SL; Bluemke DA
    J Cardiovasc Comput Tomogr; 2017; 11(4):288-294. PubMed ID: 28442244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of knowledge-based iterative model reconstruction on myocardial late iodine enhancement in computed tomography and comparison with cardiac magnetic resonance.
    Tanabe Y; Kido T; Kurata A; Fukuyama N; Yokoi T; Kido T; Uetani T; Vembar M; Dhanantwari A; Tokuyasu S; Yamashita N; Mochizuki T
    Int J Cardiovasc Imaging; 2017 Oct; 33(10):1609-1618. PubMed ID: 28409258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized energy of spectral CT for infarct imaging: Experimental validation with human validation.
    Sandfort V; Palanisamy S; Symons R; Pourmorteza A; Ahlman MA; Rice K; Thomas T; Davies-Venn C; Krauss B; Kwan A; Pandey A; Zimmerman SL; Bluemke DA
    J Cardiovasc Comput Tomogr; 2017; 11(3):171-178. PubMed ID: 28229910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnostic accuracy of semi-automatic quantitative metrics as an alternative to expert reading of CT myocardial perfusion in the CORE320 study.
    Ostovaneh MR; Vavere AL; Mehra VC; Kofoed KF; Matheson MB; Arbab-Zadeh A; Fujisawa Y; Schuijf JD; Rochitte CE; Scholte AJ; Kitagawa K; Dewey M; Cox C; DiCarli MF; George RT; Lima JAC
    J Cardiovasc Comput Tomogr; 2018; 12(3):212-219. PubMed ID: 29730016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostic accuracy of late iodine enhancement on cardiac computed tomography with a denoise filter for the evaluation of myocardial infarction.
    Matsuda T; Kido T; Itoh T; Saeki H; Shigemi S; Watanabe K; Kido T; Aono S; Yamamoto M; Matsuda T; Mochizuki T
    Int J Cardiovasc Imaging; 2015 Dec; 31 Suppl 2():177-85. PubMed ID: 26202159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-contrast agent photon-counting computed tomography of the heart: initial experience.
    Symons R; Cork TE; Lakshmanan MN; Evers R; Davies-Venn C; Rice KA; Thomas ML; Liu CY; Kappler S; Ulzheimer S; Sandfort V; Bluemke DA; Pourmorteza A
    Int J Cardiovasc Imaging; 2017 Aug; 33(8):1253-1261. PubMed ID: 28289990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial delayed enhancement with dual-source CT: advantages of targeted spatial frequency filtration and image averaging over half-scan reconstruction.
    Kurobe Y; Kitagawa K; Ito T; Kurita Y; Shiraishi Y; Nakamori S; Nakajima H; Nagata M; Ishida M; Dohi K; Ito M; Sakuma H
    J Cardiovasc Comput Tomogr; 2014; 8(4):289-98. PubMed ID: 25151921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute myocardial infarct detection with dual energy CT: correlation with single photon emission computed tomography myocardial scintigraphy in a canine model.
    Peng J; Zhang LJ; Schoepf UJ; Gibbs KP; Ji HS; Yang GF; Zhu H; Lu GM
    Acta Radiol; 2013 Apr; 54(3):259-66. PubMed ID: 23543148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided quantification of non-contrast 3D black blood MRI as an efficient alternative to reference standard manual CT angiography measurements of abdominal aortic aneurysms.
    Wang Y; Tian B; Xiong F; Kao E; Zhang Y; Liu X; Tian X; Haraldsson H; Zhu C; Leach J; Liu J; Hope MD; Mitsouras D; Saloner D
    Eur J Radiol; 2021 Jan; 134():109396. PubMed ID: 33217686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT.
    Sedghi Gamechi Z; Bons LR; Giordano M; Bos D; Budde RPJ; Kofoed KF; Pedersen JH; Roos-Hesselink JW; de Bruijne M
    Eur Radiol; 2019 Sep; 29(9):4613-4623. PubMed ID: 30673817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cine and late gadolinium enhancement MRI registration and automated myocardial infarct heterogeneity quantification.
    Guo F; Krahn PRP; Escartin T; Roifman I; Wright G
    Magn Reson Med; 2021 May; 85(5):2842-2855. PubMed ID: 33226667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual source dual-energy computed tomography of acute myocardial infarction: correlation with histopathologic findings in a canine model.
    Zhang LJ; Peng J; Wu SY; Yeh BM; Zhou CS; Lu GM
    Invest Radiol; 2010 Jun; 45(6):290-7. PubMed ID: 20421797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of low-concentration iodinated contrast medium with lower-tube-voltage dual-source CT aortography using iterative reconstruction: comparison with automatic exposure control CT aortography.
    Shin HJ; Kim SS; Lee JH; Park JH; Jeong JO; Jin SA; Shin BS; Shin KS; Ahn M
    Int J Cardiovasc Imaging; 2016 Jun; 32 Suppl 1():53-61. PubMed ID: 26621755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection of aorto-femoral vessel trajectory from whole-body computed tomography angiography data sets.
    Gao X; Kitslaar PH; Budde RP; Tu S; de Graaf MA; Xu L; Xu B; Scholte AJ; Dijkstra J; Reiber JH
    Int J Cardiovasc Imaging; 2016 Aug; 32(8):1311-22. PubMed ID: 27209285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the versatility of cardiac PET/CT: feasibility of delayed contrast enhancement CT for infarct detection in a porcine model.
    Holz A; Lautamäki R; Sasano T; Merrill J; Nekolla SG; Lardo AC; Bengel FM
    J Nucl Med; 2009 Feb; 50(2):259-65. PubMed ID: 19164240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-energy CT for the assessment of chronic myocardial infarction in patients with chronic coronary artery disease: comparison with 3-T MRI.
    Bauer RW; Kerl JM; Fischer N; Burkhard T; Larson MC; Ackermann H; Vogl TJ
    AJR Am J Roentgenol; 2010 Sep; 195(3):639-46. PubMed ID: 20729440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underestimation of myocardial blood flow by dynamic perfusion CT: Explanations by two-compartment model analysis and limited temporal sampling of dynamic CT.
    Ishida M; Kitagawa K; Ichihara T; Natsume T; Nakayama R; Nagasawa N; Kubooka M; Ito T; Uno M; Goto Y; Nagata M; Sakuma H
    J Cardiovasc Comput Tomogr; 2016; 10(3):207-14. PubMed ID: 26851149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive CT-Derived FFR Based on Structural and Fluid Analysis: A Comparison With Invasive FFR for Detection of Functionally Significant Stenosis.
    Ko BS; Cameron JD; Munnur RK; Wong DTL; Fujisawa Y; Sakaguchi T; Hirohata K; Hislop-Jambrich J; Fujimoto S; Takamura K; Crossett M; Leung M; Kuganesan A; Malaiapan Y; Nasis A; Troupis J; Meredith IT; Seneviratne SK
    JACC Cardiovasc Imaging; 2017 Jun; 10(6):663-673. PubMed ID: 27771399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo semi-automatic segmentation of multicontrast cardiovascular magnetic resonance for prospective cohort studies on plaque tissue composition: initial experience.
    Yoneyama T; Sun J; Hippe DS; Balu N; Xu D; Kerwin WS; Hatsukami TS; Yuan C
    Int J Cardiovasc Imaging; 2016 Jan; 32(1):73-81. PubMed ID: 26169389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.