These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 2844232)
1. Crystallographic analysis of the binding of NADPH, NADPH fragments, and NADPH analogues to glutathione reductase. Pai EF; Karplus PA; Schulz GE Biochemistry; 1988 Jun; 27(12):4465-74. PubMed ID: 2844232 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. Waksman G; Krishna TS; Williams CH; Kuriyan J J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095 [TBL] [Abstract][Full Text] [Related]
3. High-resolution studies of hydride transfer in the ferredoxin:NADP Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258 [TBL] [Abstract][Full Text] [Related]
4. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site. Danielson UH; Jiang F; Hansson LO; Mannervik B Biochemistry; 1999 Jul; 38(29):9254-63. PubMed ID: 10413499 [TBL] [Abstract][Full Text] [Related]
5. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution. Karplus PA; Schulz GE J Mol Biol; 1989 Nov; 210(1):163-80. PubMed ID: 2585516 [TBL] [Abstract][Full Text] [Related]
6. A crystallographic study of the glutathione binding site of glutathione reductase at 0.3-nm resolution. Karplus PA; Pai EF; Schulz GE Eur J Biochem; 1989 Jan; 178(3):693-703. PubMed ID: 2912729 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and nuclear magnetic resonance study of the interaction of NADP+ and NADPH with chicken liver fatty acid synthase. Leanz GF; Hammes GG Biochemistry; 1986 Sep; 25(19):5617-24. PubMed ID: 3535882 [TBL] [Abstract][Full Text] [Related]
8. The catalytic mechanism of glutathione reductase as derived from x-ray diffraction analyses of reaction intermediates. Pai EF; Schulz GE J Biol Chem; 1983 Feb; 258(3):1752-7. PubMed ID: 6822532 [TBL] [Abstract][Full Text] [Related]
9. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Karplus PA; Daniels MJ; Herriott JR Science; 1991 Jan; 251(4989):60-6. PubMed ID: 1986412 [TBL] [Abstract][Full Text] [Related]
10. Interaction of NADP(H) with oxidized and reduced P450 reductase during catalysis. Studies with nucleotide analogues. Murataliev MB; Feyereisen R Biochemistry; 2000 May; 39(17):5066-74. PubMed ID: 10819972 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis. Dambe TR; Kühn AM; Brossette T; Giffhorn F; Scheidig AJ Biochemistry; 2006 Aug; 45(33):10030-42. PubMed ID: 16906761 [TBL] [Abstract][Full Text] [Related]
12. Binding of coenzyme and substrate and coenzyme analogues to 6-phosphogluconate dehydrogenase from sheep liver. An X-ray study at 0.6 nm resolution. Abdallah MA; Adams MJ; Archibald IG; Biellmann JF; Helliwell JR; Jenkins SE Eur J Biochem; 1979 Jul; 98(1):121-30. PubMed ID: 38116 [TBL] [Abstract][Full Text] [Related]
13. New enzymes for old: redesigning the coenzyme and substrate specificities of glutathione reductase. Perham RN; Scrutton NS; Berry A Bioessays; 1991 Oct; 13(10):515-25. PubMed ID: 1755827 [TBL] [Abstract][Full Text] [Related]
14. Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant. Mittl PR; Berry A; Scrutton NS; Perham RN; Schulz GE J Mol Biol; 1993 May; 231(2):191-5. PubMed ID: 8510142 [TBL] [Abstract][Full Text] [Related]
15. Interaction with arginine 597 of NADPH-cytochrome P-450 oxidoreductase is a primary source of the uniform binding energy used to discriminate between NADPH and NADH. Sem DS; Kasper CB Biochemistry; 1993 Nov; 32(43):11548-58. PubMed ID: 8218222 [TBL] [Abstract][Full Text] [Related]
16. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module. Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732 [TBL] [Abstract][Full Text] [Related]
17. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Kirkman HN; Gaetani GF Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4343-7. PubMed ID: 6589599 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. Gouet P; Jouve HM; Dideberg O J Mol Biol; 1995 Jun; 249(5):933-54. PubMed ID: 7791219 [TBL] [Abstract][Full Text] [Related]
19. The structure of Trypanosoma cruzi trypanothione reductase in the oxidized and NADPH reduced state. Lantwin CB; Schlichting I; Kabsch W; Pai EF; Krauth-Siegel RL Proteins; 1994 Feb; 18(2):161-73. PubMed ID: 8159665 [TBL] [Abstract][Full Text] [Related]
20. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase. Marohnic CC; Bewley MC; Barber MJ Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]