BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 28442535)

  • 1. Multiple kinesin-14 family members drive microtubule minus end-directed transport in plant cells.
    Yamada M; Tanaka-Takiguchi Y; Hayashi M; Nishina M; Goshima G
    J Cell Biol; 2017 Jun; 216(6):1705-1714. PubMed ID: 28442535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The KCH Kinesin Drives Nuclear Transport and Cytoskeletal Coalescence to Promote Tip Cell Growth in
    Yamada M; Goshima G
    Plant Cell; 2018 Jul; 30(7):1496-1510. PubMed ID: 29880712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants.
    Jonsson E; Yamada M; Vale RD; Goshima G
    Nat Plants; 2015 Jul; 1(7):. PubMed ID: 26322239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens.
    Miki T; Nishina M; Goshima G
    Plant Cell Physiol; 2015 Apr; 56(4):737-49. PubMed ID: 25588389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NACK kinesin is required for metaphase chromosome alignment and cytokinesis in the moss Physcomitrella patens.
    Naito H; Goshima G
    Cell Struct Funct; 2015; 40(1):31-41. PubMed ID: 25748359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The preprophase band-associated kinesin-14 OsKCH2 is a processive minus-end-directed microtubule motor.
    Tseng KF; Wang P; Lee YJ; Bowen J; Gicking AM; Guo L; Liu B; Qiu W
    Nat Commun; 2018 Mar; 9(1):1067. PubMed ID: 29540705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered Tug-of-War Between Kinesin and Dynein Controls Direction of Microtubule Based Transport In Vivo.
    Rezaul K; Gupta D; Semenova I; Ikeda K; Kraikivski P; Yu J; Cowan A; Zaliapin I; Rodionov V
    Traffic; 2016 May; 17(5):475-86. PubMed ID: 26843027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rice class-XIV kinesin enters the nucleus in response to cold.
    Xu X; Walter WJ; Liu Q; Machens I; Nick P
    Sci Rep; 2018 Feb; 8(1):3588. PubMed ID: 29483672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oatp1a1 requires PDZK1 to traffic to the plasma membrane by selective recruitment of microtubule-based motor proteins.
    Wang WJ; Murray JW; Wolkoff AW
    Drug Metab Dispos; 2014 Jan; 42(1):62-9. PubMed ID: 24115750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPIRAL2 Stabilises Endoplasmic Microtubule Minus Ends in the Moss Physcomitrella patens.
    Leong SY; Yamada M; Yanagisawa N; Goshima G
    Cell Struct Funct; 2018 Mar; 43(1):53-60. PubMed ID: 29445053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3.
    Peñalva MA; Zhang J; Xiang X; Pantazopoulou A
    Mol Biol Cell; 2017 Apr; 28(7):947-961. PubMed ID: 28209731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bicaudal-D and its role in cargo sorting by microtubule-based motors.
    Dienstbier M; Li X
    Biochem Soc Trans; 2009 Oct; 37(Pt 5):1066-71. PubMed ID: 19754453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams.
    Chaudhary AR; Berger F; Berger CL; Hendricks AG
    Traffic; 2018 Feb; 19(2):111-121. PubMed ID: 29077261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of dynein transport to the microtubule plus end by kinesin.
    Roberts AJ; Goodman BS; Reck-Peterson SL
    Elife; 2014 Jun; 3():e02641. PubMed ID: 24916158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes.
    Noda Y; Okada Y; Saito N; Setou M; Xu Y; Zhang Z; Hirokawa N
    J Cell Biol; 2001 Oct; 155(1):77-88. PubMed ID: 11581287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional diversification of the kinesin-14 family in land plants.
    Gicking AM; Swentowsky KW; Dawe RK; Qiu W
    FEBS Lett; 2018 Jun; 592(12):1918-1928. PubMed ID: 29754414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens.
    Shen Z; Liu YC; Bibeau JP; Lemoi KP; Tüzel E; Vidali L
    J Integr Plant Biol; 2015 Jan; 57(1):106-19. PubMed ID: 25351786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plus-end motors override minus-end motors during transport of squid axon vesicles on microtubules.
    Muresan V; Godek CP; Reese TS; Schnapp BJ
    J Cell Biol; 1996 Oct; 135(2):383-97. PubMed ID: 8896596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moss Kinesin-14 KCBP Accelerates Chromatid Motility in Anaphase.
    Yoshida MW; Yamada M; Goshima G
    Cell Struct Funct; 2019; 44(2):95-104. PubMed ID: 31548446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants.
    Suetsugu N; Sato Y; Tsuboi H; Kasahara M; Imaizumi T; Kagawa T; Hiwatashi Y; Hasebe M; Wada M
    Plant Cell Physiol; 2012 Nov; 53(11):1854-65. PubMed ID: 23026818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.