BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2844263)

  • 1. The elongation factor Tu.GTPase reaction: effect of 2'(3')-O-aminoacyl oligoribonucleotides.
    Tezuka M; Chládek S
    Biochim Biophys Acta; 1988 Sep; 950(3):463-5. PubMed ID: 2844263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of thiostrepton and 3'-terminal fragments of aminoacyl-tRNA on EF-Tu and ribosome-dependent GTP hydrolysis.
    Bhuta P; Chládek S
    Biochim Biophys Acta; 1982 Aug; 698(2):167-72. PubMed ID: 6127109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRNA and the guanosinetriphosphatase activity of elongation factor Tu.
    Swart GW; Parmeggiani A
    Biochemistry; 1989 Jan; 28(1):327-32. PubMed ID: 2539860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of elongation factor Tu with the ribosome. A study using the antibiotic kirromycin.
    Sander G; Ivell R; Crechet JB; Parmeggiani A
    Biochemistry; 1980 Mar; 19(5):865-70. PubMed ID: 6101963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of tRNA located at the P-site on the turnover of EF-Tu.GTP on ribosomes.
    Abrahams JP; Acampo JJ; Kraal B; Bosch L
    Biochimie; 1991; 73(7-8):1089-92. PubMed ID: 1742352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminoacyl-tRNA-elongation factor Tu-ribosome interaction leading to hydrolysis of guanosine 5'-triphosphate.
    Takahashi K; Ghag S; Chládek S
    Biochemistry; 1986 Dec; 25(25):8330-6. PubMed ID: 3545292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a model for the interaction between elongation factor Tu and the ribosome.
    Weijland A; Parmeggiani A
    Science; 1993 Feb; 259(5099):1311-4. PubMed ID: 8446899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic binding of aminoacyl transfer ribonucleic acid to ribosomes: the study of binding sites of 2' and 3' isomers of aminoacyl transfer ribonucleic acid.
    Ringer D; Chládek S
    Biochemistry; 1976 Jun; 15(13):2759-65. PubMed ID: 181048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome.
    Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A
    EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the elongation factors from calf brain. 3. Properties of the GTPase activity of EF-1 alpha and mode of action of kirromycin.
    Crechet JB; Parmeggiani A
    Eur J Biochem; 1986 Dec; 161(3):655-60. PubMed ID: 3024979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu.
    Zeidler W; Schirmer NK; Egle C; Ribeiro S; Kreutzer R; Sprinzl M
    Eur J Biochem; 1996 Jul; 239(2):265-71. PubMed ID: 8706729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The GTPase activity of elongation factor Tu and the 3'-terminal end of aminoacyl-tRNA.
    Parlato G; Guesnet J; Crechet JB; Parmeggiani A
    FEBS Lett; 1981 Mar; 125(2):257-60. PubMed ID: 6112171
    [No Abstract]   [Full Text] [Related]  

  • 15. Relevance of histidine-84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: its substitution by glutamine and alanine.
    Scarano G; Krab IM; Bocchini V; Parmeggiani A
    FEBS Lett; 1995 May; 365(2-3):214-8. PubMed ID: 7781781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of antibiotics, N-acetylaminoacyl-tRNA and other agents on the elongation-factor-Tu dependent and ribosome-dependent GTP hydrolysis promoted by 2'(3')-O-L-phenylalanyladenosine.
    Campuzano S; Modolell J
    Eur J Biochem; 1981 Jun; 117(1):27-31. PubMed ID: 6114863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidine-118 of elongation factor Tu: its role in aminoacyl-tRNA binding and regulation of the GTPase activity.
    Jonák J; Anborgh PH; Parmeggiani A
    FEBS Lett; 1994 Apr; 343(1):94-8. PubMed ID: 8163025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations.
    Mesters JR; Potapov AP; de Graaf JM; Kraal B
    J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.