These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28442658)

  • 21. RNA Stable Isotope Probing of Potential Feammox Population in Paddy Soil.
    Li H; Su JQ; Yang XR; Zhou GW; Lassen SB; Zhu YG
    Environ Sci Technol; 2019 May; 53(9):4841-4849. PubMed ID: 30978017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Syntrophobacteraceae-affiliated species are major propionate-degrading sulfate reducers in paddy soil.
    Liu P; Conrad R
    Environ Microbiol; 2017 Apr; 19(4):1669-1686. PubMed ID: 28198083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing.
    Hori T; Müller A; Igarashi Y; Conrad R; Friedrich MW
    ISME J; 2010 Feb; 4(2):267-78. PubMed ID: 19776769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1.
    Ohtsuka T; Yamaguchi N; Makino T; Sakurai K; Kimura K; Kudo K; Homma E; Dong DT; Amachi S
    Environ Sci Technol; 2013 Jun; 47(12):6263-71. PubMed ID: 23668621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of hexaconazole application on soil microbes community and nitrogen transformations in paddy soils.
    Ju C; Xu J; Wu X; Dong F; Liu X; Tian C; Zheng Y
    Sci Total Environ; 2017 Dec; 609():655-663. PubMed ID: 28763662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water.
    Sun M; Xiao T; Ning Z; Xiao E; Sun W
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2911-22. PubMed ID: 25408313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of potential electrotrophic microbial community in paddy soils by enrichment of microbial electrolysis cell biocathodes.
    Li X; Ding L; Yuan H; Li X; Zhu Y
    J Environ Sci (China); 2020 Jan; 87():411-420. PubMed ID: 31791514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of carbon substrate concentration on N2, N2O, NO, CO2, and CH4 emissions from a paddy soil in anaerobic condition].
    Chen N; Liao TT; Wang R; Zheng XH; Hu RG; Butterbach-Bahl K
    Huan Jing Ke Xue; 2014 Sep; 35(9):3595-604. PubMed ID: 25518684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.
    Li H; Weng BS; Huang FY; Su JQ; Yang XR
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):6113-23. PubMed ID: 25744648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils].
    Zheng Y; Jia Z
    Wei Sheng Wu Xue Bao; 2013 Feb; 53(2):173-84. PubMed ID: 23627110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of fertilisation regimes on a nosZ-containing denitrifying community in a rice paddy soil.
    Chen Z; Hou H; Zheng Y; Qin H; Zhu Y; Wu J; Wei W
    J Sci Food Agric; 2012 Mar; 92(5):1064-72. PubMed ID: 21796637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excessive input of phosphorus significantly affects microbial Fe(III) reduction in flooded paddy soils by changing the abundances and community structures of Clostridium and Geobacteraceae.
    Li L; Qu Z; Jia R; Wang B; Wang Y; Qu D
    Sci Total Environ; 2017 Dec; 607-608():982-991. PubMed ID: 28724230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tetracycline and sulfamethazine alter dissimilatory nitrate reduction processes and increase N
    Shan J; Yang P; Rahman MM; Shang X; Yan X
    Environ Pollut; 2018 Nov; 242(Pt A):788-796. PubMed ID: 30031312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of nitrogen fertilizer and/or rice straw amendment on methanogenic archaeal communities and methane production from a rice paddy soil.
    Bao Q; Huang Y; Wang F; Nie S; Nicol GW; Yao H; Ding L
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5989-98. PubMed ID: 26923143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Characteristic of Abundances and Diversity of Carbon Dioxide Fixation Microbes in Paddy Soils].
    Liu Q; Wei XM; Wu XH; Yuan HZ; Wang JR; Li YY; Ge TD; Wu JS
    Huan Jing Ke Xue; 2017 Feb; 38(2):760-768. PubMed ID: 29964536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential contribution of anammox to nitrogen loss from paddy soils in Southern China.
    Yang XR; Li H; Nie SA; Su JQ; Weng BS; Zhu GB; Yao HY; Gilbert JA; Zhu YG
    Appl Environ Microbiol; 2015 Feb; 81(3):938-47. PubMed ID: 25416768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of microbial biomass and community composition after short-term water status change in Chinese paddy soils.
    Liao H; Chapman SJ; Li Y; Yao H
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2932-2941. PubMed ID: 29147983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global biogeography of microbial nitrogen-cycling traits in soil.
    Nelson MB; Martiny AC; Martiny JB
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):8033-40. PubMed ID: 27432978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Abundance and Diversity of CO2-Assimilating Bacteria and Algae Within Red Agricultural Soils Are Modulated by Changing Management Practice.
    Yuan H; Ge T; Chen X; Liu S; Zhu Z; Wu X; Wei W; Whiteley AS; Wu J
    Microb Ecol; 2015 Nov; 70(4):971-80. PubMed ID: 25956939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Profile of soil microbial biomass carbon in different types of subtropical paddy soils].
    Sheng H; Zhou P; Yuan H; Liao CL; Huang YX; Zhou Q; Zhang YZ
    Huan Jing Ke Xue; 2013 Apr; 34(4):1576-82. PubMed ID: 23798145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.