BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2844307)

  • 21. Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an alpha-carbonyl model compound.
    Tuor U; Wariishi H; Schoemaker HE; Gold MH
    Biochemistry; 1992 Jun; 31(21):4986-95. PubMed ID: 1599925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on compound I formation of the lignin peroxidase from Phanerochaete chrysosporium.
    Andrawis A; Johnson KA; Tien M
    J Biol Chem; 1988 Jan; 263(3):1195-8. PubMed ID: 3335539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Veratryl alcohol oxidation by lignin peroxidase.
    Khindaria A; Yamazaki I; Aust SD
    Biochemistry; 1995 Dec; 34(51):16860-9. PubMed ID: 8527462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Is cellobiose dehydrogenase from Phanerochaete chrysosporium a lignin degrading enzyme?
    Henriksson G; Zhang L; Li J; Ljungquist P; Reitberger T; Pettersson G; Johansson G
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):83-91. PubMed ID: 11004557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transformations of arylpropane lignin model compounds by a lignin peroxidase of the white-rot fungus Phanerochaete chrysosporium.
    Huynh VB; PaszczyƄski A; Olson P; Crawford R
    Arch Biochem Biophys; 1986 Oct; 250(1):186-96. PubMed ID: 3767372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of Fenton's reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium.
    Kremer SM; Wood PM
    Eur J Biochem; 1992 Sep; 208(3):807-14. PubMed ID: 1396686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron transfer from Phanerochaete chrysosporium cellobiose oxidase to equine cytochrome c and Pseudomonas aeruginosa cytochrome c-551.
    Rogers MS; Jones GD; Antonini G; Wilson MT; Brunori M
    Biochem J; 1994 Mar; 298 ( Pt 2)(Pt 2):329-34. PubMed ID: 8135738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of chemicals by reactive radicals produced by cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Cameron MD; Aust SD
    Arch Biochem Biophys; 1999 Jul; 367(1):115-21. PubMed ID: 10375406
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reductions catalyzed by a quinone and peroxidases from Phanerochaete chrysosporium.
    Rasmussen SJ; Chung N; Khindaria A; Grover TA; Aust SD
    Arch Biochem Biophys; 1995 Jul; 320(2):243-9. PubMed ID: 7625830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EPR detection and characterization of lignin peroxidase porphyrin pi-cation radical.
    Khindaria A; Aust SD
    Biochemistry; 1996 Oct; 35(40):13107-11. PubMed ID: 8855947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lignin peroxidase oxidation of Mn2+ in the presence of veratryl alcohol, malonic or oxalic acid, and oxygen.
    Popp JL; Kalyanaraman B; Kirk TK
    Biochemistry; 1990 Nov; 29(46):10475-80. PubMed ID: 2176868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: involvement of veratryl alcohol.
    Paszczynski A; Crawford RL
    Biochem Biophys Res Commun; 1991 Aug; 178(3):1056-63. PubMed ID: 1872828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Cameron MD; Aust SD
    Biochemistry; 2000 Nov; 39(44):13595-601. PubMed ID: 11063597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of CCl4 to the trichloromethyl radical by lignin peroxidase H2 from Phanerochaete chrysosporium.
    Shah MM; Grover TA; Aust SD
    Biochem Biophys Res Commun; 1993 Mar; 191(3):887-92. PubMed ID: 8385455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Lignin and ligninase].
    Levit MN; Shkrob AM
    Bioorg Khim; 1992 Mar; 18(3):309-45. PubMed ID: 1524589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium.
    Tien M; Tu CP
    Nature; 1987 Apr 2-8; 326(6112):520-3. PubMed ID: 3561490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygen reduction by cellobiose oxidoreductase: the role of the haem group.
    Mason MG; Wilson MT; Ball A; Nicholls P
    FEBS Lett; 2002 May; 518(1-3):29-32. PubMed ID: 11997012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lignin peroxidase: resonance Raman spectral evidence for compound II and for a temperature-dependent coordination-state equilibrium in the ferric enzyme.
    Andersson LA; Renganathan V; Loehr TM; Gold MH
    Biochemistry; 1987 Apr; 26(8):2258-63. PubMed ID: 3040086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of cDNA clones for ligninase from Phanerochaete chrysosporium using synthetic oligonucleotide probes.
    Zhang YZ; Zylstra GJ; Olsen RH; Reddy CA
    Biochem Biophys Res Commun; 1986 Jun; 137(2):649-56. PubMed ID: 3755339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Release of the FAD domain from cellobiose oxidase by proteases from cellulolytic cultures of Phanerochaete chrysosporium.
    Habu N; Samejima M; Dean JF; Eriksson KE
    FEBS Lett; 1993 Jul; 327(2):161-4. PubMed ID: 8392950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.