These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2844307)

  • 41. Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization.
    Kim KH; Bai X; Cady S; Gable P; Brown RC
    ChemSusChem; 2015 Mar; 8(5):894-900. PubMed ID: 25677712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases.
    Bao W; Renganathan V
    FEBS Lett; 1992 May; 302(1):77-80. PubMed ID: 1587358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Free radical reaction promoted by ionic liquid: a route for metal-free oxidation depolymerization of lignin model compound and lignin.
    Yang Y; Fan H; Song J; Meng Q; Zhou H; Wu L; Yang G; Han B
    Chem Commun (Camb); 2015 Mar; 51(19):4028-31. PubMed ID: 25661479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ observation of radicals and molecular products during lignin pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2014 Jul; 7(7):2022-9. PubMed ID: 25044866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lignin peroxidases can also oxidize manganese.
    Khindaria A; Barr DP; Aust SD
    Biochemistry; 1995 Jun; 34(23):7773-9. PubMed ID: 7779824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phanerochaete chrysosporium Multienzyme Catabolic System for in Vivo Modification of Synthetic Lignin to Succinic Acid.
    Hong CY; Ryu SH; Jeong H; Lee SS; Kim M; Choi IG
    ACS Chem Biol; 2017 Jul; 12(7):1749-1759. PubMed ID: 28463479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2.
    Kremer SM; Wood PM
    Eur J Biochem; 1992 Apr; 205(1):133-8. PubMed ID: 1555575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Factors Involved in the Regulation of a Ligninase Activity in Phanerochaete chrysosporium.
    Faison BD; Kirk TK
    Appl Environ Microbiol; 1985 Feb; 49(2):299-304. PubMed ID: 16346716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Irreversible oxidation of ferricytochrome c by lignin peroxidase.
    Sheng D; Gold MH
    Biochemistry; 1998 Feb; 37(7):2029-36. PubMed ID: 9485329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models.
    d'Acunzo F; Galli C
    Eur J Biochem; 2003 Sep; 270(17):3634-40. PubMed ID: 12919328
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of fast pyrolysis of lignin: studying model compounds.
    Custodis VB; Hemberger P; Ma Z; van Bokhoven JA
    J Phys Chem B; 2014 Jul; 118(29):8524-31. PubMed ID: 24937704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium.
    Barr DP; Shah MM; Grover TA; Aust SD
    Arch Biochem Biophys; 1992 Nov; 298(2):480-5. PubMed ID: 1329659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mode of action and active site of an extracellular peroxidase from Pleurotus ostreatus.
    Han YH; Shin KS; Youn HD; Hah YC; Kang SO
    Biochem J; 1996 Mar; 314 ( Pt 2)(Pt 2):421-6. PubMed ID: 8670051
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Henriksson G; Sild V; Szabó IJ; Pettersson G; Johansson G
    Biochim Biophys Acta; 1998 Mar; 1383(1):48-54. PubMed ID: 9546045
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems.
    Kagan VE; Yalowich JC; Day BW; Goldman R; Gantchev TG; Stoyanovsky DA
    Biochemistry; 1994 Aug; 33(32):9651-60. PubMed ID: 8068642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for formation of the veratryl alcohol cation radical by lignin peroxidase.
    Khindaria A; Grover TA; Aust SD
    Biochemistry; 1995 May; 34(18):6020-5. PubMed ID: 7742304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitration of veratryl alcohol by lignin peroxidase and tetranitromethane.
    Sheng D; Joshi DK; Gold MH
    Arch Biochem Biophys; 1998 Apr; 352(1):121-9. PubMed ID: 9521824
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase.
    Bao W; Fukushima Y; Jensen KA; Moen MA; Hammel KE
    FEBS Lett; 1994 Nov; 354(3):297-300. PubMed ID: 7957943
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reductive activity of a manganese-dependent peroxidase from Phanerochaete chrysosporium.
    Chung N; Shah MM; Grover TA; Aust SD
    Arch Biochem Biophys; 1993 Oct; 306(1):70-5. PubMed ID: 8215423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.