These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2844307)

  • 61. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation?
    Hildén L; Johansson G; Pettersson G; Li J; Ljungquist P; Henriksson G
    FEBS Lett; 2000 Jul; 477(1-2):79-83. PubMed ID: 10899314
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Resonance Raman spectroscopic studies of cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Cohen JD; Bao W; Renganathan V; Subramaniam SS; Loehr TM
    Arch Biochem Biophys; 1997 May; 341(2):321-8. PubMed ID: 9169022
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Direct 1H NMR evidence for conversion of beta-D-cellobiose to cellobionolactone by cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Higham CW; Gordon-Smith D; Dempsey CE; Wood PM
    FEBS Lett; 1994 Aug; 351(1):128-32. PubMed ID: 8076681
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Oxidative polymerization of lignins by laccase in water-acetone mixture.
    Fiţigău IF; Peter F; Boeriu CG
    Acta Biochim Pol; 2013; 60(4):817-22. PubMed ID: 24432339
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium.
    Wariishi H; Valli K; Gold MH
    Biochem Biophys Res Commun; 1991 Apr; 176(1):269-75. PubMed ID: 2018522
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Role of Veratryl Alcohol in Regulating Ligninase Activity in Phanerochaete chrysosporium.
    Faison BD; Kirk TK; Farrell RL
    Appl Environ Microbiol; 1986 Aug; 52(2):251-4. PubMed ID: 16347125
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Oxidative coupling during lignin polymerization is determined by unpaired electron delocalization within parent phenylpropanoid radicals.
    Russell WR; Forrester AR; Chesson A; Burkitt MJ
    Arch Biochem Biophys; 1996 Aug; 332(2):357-66. PubMed ID: 8806746
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The synergistic application of quinone reductase and lignin peroxidase for the deconstruction of industrial (technical) lignins and analysis of the degraded lignin products.
    Majeke BM; Collard FX; Tyhoda L; Görgens JF
    Bioresour Technol; 2021 Jan; 319():124152. PubMed ID: 32992274
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase.
    Whittaker MM; Kersten PJ; Nakamura N; Sanders-Loehr J; Schweizer ES; Whittaker JW
    J Biol Chem; 1996 Jan; 271(2):681-7. PubMed ID: 8557673
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Molecular products and radicals from pyrolysis of lignin.
    Kibet J; Khachatryan L; Dellinger B
    Environ Sci Technol; 2012 Dec; 46(23):12994-3001. PubMed ID: 23131040
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reduction of quinones and radicals by a plasma membrane redox system of Phanerochaete chrysosporium.
    Stahl JD; Rasmussen SJ; Aust SD
    Arch Biochem Biophys; 1995 Sep; 322(1):221-7. PubMed ID: 7574679
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Free radical intermediates during peroxidase oxidation of 2-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-4-methylphenol, and related phenol compounds.
    Valoti M; Sipe HJ; Sgaragli G; Mason RP
    Arch Biochem Biophys; 1989 Mar; 269(2):423-32. PubMed ID: 2537599
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Oxidation of dimethoxylated aromatic compounds by lignin peroxidase from Phanerochaete chrysosporium.
    Joshi DK; Gold MH
    Eur J Biochem; 1996 Apr; 237(1):45-57. PubMed ID: 8620892
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii.
    Baminger U; Subramaniam SS; Renganathan V; Haltrich D
    Appl Environ Microbiol; 2001 Apr; 67(4):1766-74. PubMed ID: 11282631
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Polymerization of guaiacol and a phenolic beta-O-4-substructure by Trametes hirsuta laccase in the presence of ABTS.
    Rittstieg K; Suurnäkki A; Suortti T; Kruus K; Guebitz GM; Buchert J
    Biotechnol Prog; 2003; 19(5):1505-9. PubMed ID: 14524712
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Stabilization of the veratryl alcohol cation radical by lignin peroxidase.
    Khindaria A; Yamazaki I; Aust SD
    Biochemistry; 1996 May; 35(20):6418-24. PubMed ID: 8639588
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation.
    Valli K; Wariishi H; Gold MH
    Biochemistry; 1990 Sep; 29(37):8535-9. PubMed ID: 2271536
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ligninase-mediated removal of 17beta-estradiol from water in the presence of natural organic matter: efficiency and pathways.
    Mao L; Huang Q; Luo Q; Lu J; Yang X; Gao S
    Chemosphere; 2010 Jun; 80(4):469-73. PubMed ID: 20416920
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition.
    Igarashi K; Samejima M; Eriksson KE
    Eur J Biochem; 1998 Apr; 253(1):101-6. PubMed ID: 9578466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.