These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 28443608)
1. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Li W; Dolocan A; Oh P; Celio H; Park S; Cho J; Manthiram A Nat Commun; 2017 Apr; 8():14589. PubMed ID: 28443608 [TBL] [Abstract][Full Text] [Related]
2. In Situ Interfacial Tuning To Obtain High-Performance Nickel-Rich Cathodes in Lithium Metal Batteries. Ma H; Hwang D; Ahn YJ; Lee MY; Kim S; Lee Y; Lee SM; Kwak SK; Choi NS ACS Appl Mater Interfaces; 2020 Jul; 12(26):29365-29375. PubMed ID: 32515943 [TBL] [Abstract][Full Text] [Related]
3. The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach. Nowak S; Winter M Acc Chem Res; 2018 Feb; 51(2):265-272. PubMed ID: 29381052 [TBL] [Abstract][Full Text] [Related]
4. Mechanism Study of Unsaturated Tripropargyl Phosphate as an Efficient Electrolyte Additive Forming Multifunctional Interphases in Lithium Ion and Lithium Metal Batteries. Qian Y; Kang Y; Hu S; Shi Q; Chen Q; Tang X; Xiao Y; Zhao H; Luo G; Xu K; Deng Y ACS Appl Mater Interfaces; 2020 Mar; 12(9):10443-10451. PubMed ID: 32040291 [TBL] [Abstract][Full Text] [Related]
5. Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li||LiCoO Ren X; Zhang X; Shadike Z; Zou L; Jia H; Cao X; Engelhard MH; Matthews BE; Wang C; Arey BW; Yang XQ; Liu J; Zhang JG; Xu W Adv Mater; 2020 Dec; 32(49):e2004898. PubMed ID: 33150628 [TBL] [Abstract][Full Text] [Related]
6. Laser-Assisted Surface Lithium Fluoride Decoration of a Cobalt-Free High-Voltage Spinel LiNi Cui Z; Khosla N; Lai T; Narayan J; Manthiram A ACS Appl Mater Interfaces; 2023 Jan; 15(1):1247-1255. PubMed ID: 36574779 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes. Wei S; Choudhury S; Tu Z; Zhang K; Archer LA Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617 [TBL] [Abstract][Full Text] [Related]
8. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Liu W; Oh P; Liu X; Lee MJ; Cho W; Chae S; Kim Y; Cho J Angew Chem Int Ed Engl; 2015 Apr; 54(15):4440-57. PubMed ID: 25801735 [TBL] [Abstract][Full Text] [Related]
9. High-Voltage, Highly Reversible Sodium Batteries Enabled by Fluorine-Rich Electrode/Electrolyte Interphases. Guo XF; Yang Z; Zhu YF; Liu XH; He XX; Li L; Qiao Y; Chou SL Small Methods; 2022 Jun; 6(6):e2200209. PubMed ID: 35466574 [TBL] [Abstract][Full Text] [Related]
10. Identifying Active Sites for Parasitic Reactions at the Cathode-Electrolyte Interface. Xie Y; Gao H; Gim J; Ngo AT; Ma ZF; Chen Z J Phys Chem Lett; 2019 Feb; 10(3):589-594. PubMed ID: 30668123 [TBL] [Abstract][Full Text] [Related]
11. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries. Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529 [TBL] [Abstract][Full Text] [Related]
12. Suppressing Voltage Decay of a Lithium-Rich Cathode Material by Surface Enrichment with Atomic Ruthenium. Shang H; Ning F; Li B; Zuo Y; Lu S; Xia D ACS Appl Mater Interfaces; 2018 Jun; 10(25):21349-21355. PubMed ID: 29862806 [TBL] [Abstract][Full Text] [Related]
13. The Interaction in Electrolyte Additives Accelerates Ion Transport to Achieve High-Energy Non-Aqueous Lithium Metal Batteries. Li Z; Zheng X; Ye S; Ou C; Xie Y; Li Z; Tian F; Lei D; Wang C Small; 2023 Sep; 19(39):e2301005. PubMed ID: 37246249 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode-Electrolyte Interface in Lithium-Ion Batteries. Gao H; Maglia F; Lamp P; Amine K; Chen Z ACS Appl Mater Interfaces; 2017 Dec; 9(51):44542-44549. PubMed ID: 29211441 [TBL] [Abstract][Full Text] [Related]
15. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246 [TBL] [Abstract][Full Text] [Related]
16. Insights into the Cathode-Electrolyte Interphases of High-Energy-Density Cathodes in Lithium-Ion Batteries. Erickson EM; Li W; Dolocan A; Manthiram A ACS Appl Mater Interfaces; 2020 Apr; 12(14):16451-16461. PubMed ID: 32181643 [TBL] [Abstract][Full Text] [Related]
17. Zinc-Doped High-Nickel, Low-Cobalt Layered Oxide Cathodes for High-Energy-Density Lithium-Ion Batteries. Cui Z; Xie Q; Manthiram A ACS Appl Mater Interfaces; 2021 Apr; 13(13):15324-15332. PubMed ID: 33760578 [TBL] [Abstract][Full Text] [Related]
18. Atomic-Scale Direct Identification of Surface Variations in Cathode Oxides for Aqueous and Nonaqueous Lithium-Ion Batteries. Byeon P; Lee HJ; Choi JW; Chung SY ChemSusChem; 2019 Feb; 12(4):787-794. PubMed ID: 30609321 [TBL] [Abstract][Full Text] [Related]
19. Controllable Solid Electrolyte Interphase in Nickel-Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium-Ion Batteries. Kim J; Lee J; Ma H; Jeong HY; Cha H; Lee H; Yoo Y; Park M; Cho J Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226554 [TBL] [Abstract][Full Text] [Related]
20. Localized High-Concentration Electrolytes with Low-Cost Diluents Compatible with Both Cobalt-Free LiNiO Guo Z; Cui Z; Sim R; Manthiram A Small; 2023 Dec; 19(49):e2305055. PubMed ID: 37568247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]