These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2844362)

  • 1. Systemic effects of single hindlimb burn injury on skeletal muscle function and cyclic nucleotide levels in the murine model.
    Tomera JF; Martyn J
    Burns Incl Therm Inj; 1988 Jun; 14(3):210-9. PubMed ID: 2844362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal trauma alters myocardial cyclic nucleotides and protein content in mice.
    Tomera JF; Martyn JA
    Br J Pharmacol; 1990 Oct; 101(2):263-8. PubMed ID: 2175230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model to study local effects of thermal trauma on muscle metabolism.
    Odessey R; Allen ER; Newman WP
    Circ Shock; 1983; 11(2):131-40. PubMed ID: 6640857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered protein kinetics in vivo after single-limb burn injury.
    Shangraw RE; Turinsky J
    Biochem J; 1984 Nov; 223(3):747-53. PubMed ID: 6508738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mediators of burn-induced neuromuscular changes in mice.
    Tomera JF; Martyn J
    Br J Pharmacol; 1989 Nov; 98(3):921-9. PubMed ID: 2556207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of burn trauma on adenosine 3':5' cyclic monophosphate, inositol trisphosphate, and contraction in mouse gastrocnemius muscle.
    Tomera JF
    J Burn Care Rehabil; 1991; 12(6):485-97. PubMed ID: 1663953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of thermal injury on glucocorticoid and androgen binding in skeletal muscles with different fiber populations.
    Jacobson HI; Turinsky J
    J Trauma; 1982 Oct; 22(10):845-52. PubMed ID: 7131603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid and adenine nucleotide metabolism in muscle after burn injury.
    Turinsky J; Chaudry IH
    Am J Physiol; 1985 Nov; 249(5 Pt 2):R603-10. PubMed ID: 4061680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of endotoxin infection on cyclic nucleotides in ventricular and gastrocnemius muscle.
    Tomera JF; Martyn J
    Circ Shock; 1990 Dec; 32(4):281-92. PubMed ID: 1963121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Change in the cyclic nucleotide system components in neurogenic myopathies].
    Khokhlov AP; Malakhovskiĭ VK
    Vopr Med Khim; 1980; 26(5):640-3. PubMed ID: 6252689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biphasic alterations in glucose metabolism by soleus muscle from the burned limb.
    Turinsky J; Shangraw R
    Adv Shock Res; 1979; 2():23-30. PubMed ID: 400577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic and skeletal muscle phospholipid metabolism in recovering burned rats.
    Turinsky J
    Exp Mol Pathol; 1986 Oct; 45(2):185-92. PubMed ID: 3770144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multivariate influence of inositol phosphates on cAMP: interrelationships between signal transduction mechanisms in burn trauma.
    Tomera JF; Lilford K
    Burns; 1993 Aug; 19(4):313-9. PubMed ID: 8395175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of insulin and leucine on protein turnover in rat soleus muscle after burn injury.
    Odessey R; Parr B
    Metabolism; 1982 Jan; 31(1):82-7. PubMed ID: 7043163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-talk of second messengers during the systemic trauma response following burn injury: how, when, and where.
    Tomera JF; Kukulka SP; Lilford K
    Circ Shock; 1993 Feb; 39(2):128-38. PubMed ID: 8387897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local effect of burn injury on glucose and amino acid metabolism by skeletal muscle.
    Shangraw RE; Turinsky J
    JPEN J Parenter Enteral Nutr; 1979; 3(5):323-27. PubMed ID: 574565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single hind limb burn injury to mice alters nuclear factor-κB expression and [¹⁸F] 2-fluoro-2-deoxy-D-glucose uptake.
    Carter EA; Hamrahi V; Paul K; Bonab AA; Jung W; Tompkins RG; Fischman AJ
    J Burn Care Res; 2014; 35(6):e373-8. PubMed ID: 25100541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular dysfunction in burns and its relationship to burn size, hypermetabolism, and immunosuppression.
    Tomera JF; Martyn J; Hoaglin DC
    J Trauma; 1988 Oct; 28(10):1499-504. PubMed ID: 3172313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors.
    Schoeffter P; Lugnier C; Demesy-Waeldele F; Stoclet JC
    Biochem Pharmacol; 1987 Nov; 36(22):3965-72. PubMed ID: 2825708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-modulation between acetylcholinesterase and cyclic nucleotide signal transduction systems in burn trauma.
    Tomera JF; Lilford K
    Methods Find Exp Clin Pharmacol; 1995 Mar; 17(2):89-105. PubMed ID: 7674703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.