These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 28443660)
1. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model. Garner KL; Suh S; Keller AA Environ Sci Technol; 2017 May; 51(10):5541-5551. PubMed ID: 28443660 [TBL] [Abstract][Full Text] [Related]
2. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Gottschalk F; Kost E; Nowack B Environ Toxicol Chem; 2013 Jun; 32(6):1278-87. PubMed ID: 23418073 [TBL] [Abstract][Full Text] [Related]
3. In silico analysis of nanomaterials hazard and risk. Cohen Y; Rallo R; Liu R; Liu HH Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971 [TBL] [Abstract][Full Text] [Related]
4. Multimedia environmental distribution of engineered nanomaterials. Liu HH; Cohen Y Environ Sci Technol; 2014 Mar; 48(6):3281-92. PubMed ID: 24548277 [TBL] [Abstract][Full Text] [Related]
5. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717 [TBL] [Abstract][Full Text] [Related]
6. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Adam V; Caballero-Guzman A; Nowack B Environ Pollut; 2018 Dec; 243(Pt A):17-27. PubMed ID: 30170204 [TBL] [Abstract][Full Text] [Related]
7. Engineered nanomaterials exert sublethal bacterial stress at very low doses: Effects of concentration, light, and media on cell membrane permeability. Wu S; Wells G; Gray KA Sci Total Environ; 2024 Oct; 948():174861. PubMed ID: 39029752 [TBL] [Abstract][Full Text] [Related]
8. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review. Lewis RW; Bertsch PM; McNear DH Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121 [TBL] [Abstract][Full Text] [Related]
9. Abiotic soil changes induced by engineered nanomaterials: A critical review. Dror I; Yaron B; Berkowitz B J Contam Hydrol; 2015 Oct; 181():3-16. PubMed ID: 25913535 [TBL] [Abstract][Full Text] [Related]
11. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Gottschalk F; Sonderer T; Scholz RW; Nowack B Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538 [TBL] [Abstract][Full Text] [Related]
12. Differential Reactivity of Copper- and Gold-Based Nanomaterials Controls Their Seasonal Biogeochemical Cycling and Fate in a Freshwater Wetland Mesocosm. Avellan A; Simonin M; Anderson SM; Geitner NK; Bossa N; Spielman-Sun E; Bernhardt ES; Castellon BT; Colman BP; Cooper JL; Ho M; Hochella MF; Hsu-Kim H; Inoue S; King RS; Laughton S; Matson CW; Perrotta BG; Richardson CJ; Unrine JM; Wiesner MR; Lowry GV Environ Sci Technol; 2020 Feb; 54(3):1533-1544. PubMed ID: 31951397 [TBL] [Abstract][Full Text] [Related]
13. The release of engineered nanomaterials to the environment. Gottschalk F; Nowack B J Environ Monit; 2011 May; 13(5):1145-55. PubMed ID: 21387066 [TBL] [Abstract][Full Text] [Related]
14. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Sun TY; Bornhöft NA; Hungerbühler K; Nowack B Environ Sci Technol; 2016 May; 50(9):4701-11. PubMed ID: 27043743 [TBL] [Abstract][Full Text] [Related]
15. Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems. Rajkovic S; Bornhöft NA; van der Weijden R; Nowack B; Adam V Waste Manag; 2020 Jul; 113():118-131. PubMed ID: 32531660 [TBL] [Abstract][Full Text] [Related]
16. Dynamic probabilistic material flow analysis of nano-SiO Wang Y; Nowack B Environ Pollut; 2018 Apr; 235():589-601. PubMed ID: 29331892 [TBL] [Abstract][Full Text] [Related]
17. Modeling the fate and end-of-life phase of engineered nanomaterials in the Japanese construction sector. Suzuki S; Part F; Matsufuji Y; Huber-Humer M Waste Manag; 2018 Feb; 72():389-398. PubMed ID: 29196056 [TBL] [Abstract][Full Text] [Related]
18. Nanomaterials in Biosolids Inhibit Nodulation, Shift Microbial Community Composition, and Result in Increased Metal Uptake Relative to Bulk/Dissolved Metals. Judy JD; McNear DH; Chen C; Lewis RW; Tsyusko OV; Bertsch PM; Rao W; Stegemeier J; Lowry GV; McGrath SP; Durenkamp M; Unrine JM Environ Sci Technol; 2015 Jul; 49(14):8751-8. PubMed ID: 26061863 [TBL] [Abstract][Full Text] [Related]
19. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO Hong H; Adam V; Nowack B Environ Toxicol Chem; 2021 Sep; 40(9):2629-2639. PubMed ID: 34171135 [TBL] [Abstract][Full Text] [Related]
20. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities. Zhai Y; Hunting ER; Wouterse M; Peijnenburg WJGM; Vijver MG Ecotoxicol Environ Saf; 2017 Nov; 145():349-358. PubMed ID: 28759764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]