These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 28443863)
1. [FeFe] Hydrogenase active site model chemistry in a UiO-66 metal-organic framework. Pullen S; Roy S; Ott S Chem Commun (Camb); 2017 May; 53(37):5227-5230. PubMed ID: 28443863 [TBL] [Abstract][Full Text] [Related]
2. Functionalization of robust Zr(IV)-based metal-organic framework films via a postsynthetic ligand exchange. Fei H; Pullen S; Wagner A; Ott S; Cohen SM Chem Commun (Camb); 2015 Jan; 51(1):66-9. PubMed ID: 25364799 [TBL] [Abstract][Full Text] [Related]
3. Utilizing Metal-Thiocatecholate Functionalized UiO-66 Framework for Photocatalytic Hydrogen Evolution Reaction. Zhong H; Chen S; Jiang Z; Hu J; Dong J; Chung LH; Lin QC; Ou W; Yu L; He J Small; 2023 Apr; 19(17):e2207266. PubMed ID: 36693790 [TBL] [Abstract][Full Text] [Related]
4. Bulky oxadithiolate-bridged [FeFe]‑hydrogenase mimics [Fe Zhao PH; Gu XL; Tan X; Jin B; Guo Y J Inorg Biochem; 2022 Oct; 235():111933. PubMed ID: 35863295 [TBL] [Abstract][Full Text] [Related]
5. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework. Pullen S; Fei H; Orthaber A; Cohen SM; Ott S J Am Chem Soc; 2013 Nov; 135(45):16997-7003. PubMed ID: 24116734 [TBL] [Abstract][Full Text] [Related]
6. Protonation of [FeFe]-hydrogenase sub-site analogues: revealing mechanism using FTIR stopped-flow techniques. Wright JA; Webster L; Jablonskyte A; Woi PM; Ibrahim SK; Pickett CJ Faraday Discuss; 2011; 148():359-71; discussion 421-41. PubMed ID: 21322493 [TBL] [Abstract][Full Text] [Related]
7. Site-selective X-ray spectroscopy on an asymmetric model complex of the [FeFe] hydrogenase active site. Leidel N; Chernev P; Havelius KG; Ezzaher S; Ott S; Haumann M Inorg Chem; 2012 Apr; 51(8):4546-59. PubMed ID: 22443530 [TBL] [Abstract][Full Text] [Related]
8. Photoinduced Terminal Hydride of [FeFe]-Hydrogenase Biomimetic Complexes. Niu S; Nelson AE; De La Torre P; Li H; Works CF; Hall MB Inorg Chem; 2019 Oct; 58(20):13737-13741. PubMed ID: 31566967 [TBL] [Abstract][Full Text] [Related]
9. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction. Gao W; Ekström J; Liu J; Chen C; Eriksson L; Weng L; Akermark B; Sun L Inorg Chem; 2007 Mar; 46(6):1981-91. PubMed ID: 17295467 [TBL] [Abstract][Full Text] [Related]
10. Borane-protected cyanides as surrogates of H-bonded cyanides in [FeFe]-hydrogenase active site models. Manor BC; Ringenberg MR; Rauchfuss TB Inorg Chem; 2014 Jul; 53(14):7241-7. PubMed ID: 24992155 [TBL] [Abstract][Full Text] [Related]
11. Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. Adamska-Venkatesh A; Simmons TR; Siebel JF; Artero V; Fontecave M; Reijerse E; Lubitz W Phys Chem Chem Phys; 2015 Feb; 17(7):5421-30. PubMed ID: 25613229 [TBL] [Abstract][Full Text] [Related]
12. DFT dissection of the reduction step in H2 catalytic production by [FeFe]-hydrogenase-inspired models: can the bridging hydride become more reactive than the terminal isomer? Filippi G; Arrigoni F; Bertini L; De Gioia L; Zampella G Inorg Chem; 2015 Oct; 54(19):9529-42. PubMed ID: 26359661 [TBL] [Abstract][Full Text] [Related]
13. Effect of cyanide ligands on the electronic structure of [FeFe] hydrogenase active-site model complexes with an azadithiolate cofactor. Erdem Ö; Stein M; Kaur-Ghumaan S; Reijerse EJ; Ott S; Lubitz W Chemistry; 2013 Oct; 19(43):14566-72. PubMed ID: 24038239 [TBL] [Abstract][Full Text] [Related]
14. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Ghosh S; Hogarth G; Hollingsworth N; Holt KB; Richards I; Richmond MG; Sanchez BE; Unwin D Dalton Trans; 2013 May; 42(19):6775-92. PubMed ID: 23503781 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic Insight into Electrocatalytic H Arrigoni F; Bertini L; De Gioia L; Cingolani A; Mazzoni R; Zanotti V; Zampella G Inorg Chem; 2017 Nov; 56(22):13852-13864. PubMed ID: 29112805 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants. Sommer C; Rumpel S; Roy S; Farès C; Artero V; Fontecave M; Reijerse E; Lubitz W J Biol Inorg Chem; 2018 May; 23(3):481-491. PubMed ID: 29627860 [TBL] [Abstract][Full Text] [Related]
17. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Rauchfuss TB Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides. Roy S; Nguyen TA; Gan L; Jones AK Dalton Trans; 2015 Sep; 44(33):14865-76. PubMed ID: 26223293 [TBL] [Abstract][Full Text] [Related]
19. Diiron and trinuclear NiFe Zhao PH; Li JR; Gu XL; Jing XB; Liu XF J Inorg Biochem; 2020 Sep; 210():111126. PubMed ID: 32521290 [TBL] [Abstract][Full Text] [Related]
20. Redox reactions of [FeFe]-hydrogenase models containing an internal amine and a pendant phosphine. Zheng D; Wang M; Chen L; Wang N; Sun L Inorg Chem; 2014 Feb; 53(3):1555-61. PubMed ID: 24422466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]