These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 28443874)
1. Inertial migration and axial control of deformable capsules. Schaaf C; Stark H Soft Matter; 2017 May; 13(19):3544-3555. PubMed ID: 28443874 [TBL] [Abstract][Full Text] [Related]
2. Feedback control of inertial microfluidics using axial control forces. Prohm C; Stark H Lab Chip; 2014 Jun; 14(12):2115-23. PubMed ID: 24811136 [TBL] [Abstract][Full Text] [Related]
3. A flowing pair of particles in inertial microfluidics. Schaaf C; Rühle F; Stark H Soft Matter; 2019 Feb; 15(9):1988-1998. PubMed ID: 30714602 [TBL] [Abstract][Full Text] [Related]
4. A pair of particles in inertial microfluidics: effect of shape, softness, and position. Patel K; Stark H Soft Matter; 2021 May; 17(18):4804-4817. PubMed ID: 33871511 [TBL] [Abstract][Full Text] [Related]
5. Elasto-inertial migration of deformable capsules in a microchannel. Raffiee AH; Dabiri S; Ardekani AM Biomicrofluidics; 2017 Nov; 11(6):064113. PubMed ID: 29333202 [TBL] [Abstract][Full Text] [Related]
6. Optimal Control of Colloidal Trajectories in Inertial Microfluidics Using the Saffman Effect. Rühle F; Schaaf C; Stark H Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32549244 [TBL] [Abstract][Full Text] [Related]
7. Inertial migration of an elastic capsule in a Poiseuille flow. Shin SJ; Sung HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046321. PubMed ID: 21599309 [TBL] [Abstract][Full Text] [Related]
8. Inertial migration of a deformable capsule in an oscillatory flow in a microchannel. Lafzi A; Raffiee AH; Dabiri S Phys Rev E; 2020 Dec; 102(6-1):063110. PubMed ID: 33466115 [TBL] [Abstract][Full Text] [Related]
9. Lateral and cross-lateral focusing of spherical particles in a square microchannel. Choi YS; Seo KW; Lee SJ Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415 [TBL] [Abstract][Full Text] [Related]
10. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Liu C; Hu G; Jiang X; Sun J Lab Chip; 2015 Feb; 15(4):1168-77. PubMed ID: 25563524 [TBL] [Abstract][Full Text] [Related]
11. Investigating the effects of membrane deformability on artificial capsule adhesion to the functionalized surface. Balsara HD; Banton RJ; Eggleton CD Biomech Model Mechanobiol; 2016 Oct; 15(5):1055-68. PubMed ID: 26564174 [TBL] [Abstract][Full Text] [Related]
12. Lateral migration of an elastic capsule by optical force in a uniform flow. Chang CB; Huang WX; Sung HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066306. PubMed ID: 23368037 [TBL] [Abstract][Full Text] [Related]
13. Off-center motion of a trapped elastic capsule in a microfluidic channel with a narrow constriction. Luo ZY; Bai BF Soft Matter; 2017 Nov; 13(44):8281-8292. PubMed ID: 29071316 [TBL] [Abstract][Full Text] [Related]
14. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS; Song SH; Jung HI Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305 [TBL] [Abstract][Full Text] [Related]
15. Numerical investigation of the formation and stability of homogeneous pairs of soft particles in inertial microfluidics. Owen B; Krüger T J Fluid Mech; 2022 Apr; 937():. PubMed ID: 35250050 [TBL] [Abstract][Full Text] [Related]
16. Motion of an Elastic Capsule in a Trapezoidal Microchannel Under Stokes Flow Conditions. Koolivand A; Dimitrakopoulos P Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32429526 [TBL] [Abstract][Full Text] [Related]
17. Inertial migration of cancer cells in blood flow in microchannels. Tanaka T; Ishikawa T; Numayama-Tsuruta K; Imai Y; Ueno H; Yoshimoto T; Matsuki N; Yamaguchi T Biomed Microdevices; 2012 Feb; 14(1):25-33. PubMed ID: 21898009 [TBL] [Abstract][Full Text] [Related]