These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28443874)

  • 21. Changes of Inertial Focusing Position in a Triangular Channel Depending on Droplet Deformability and Size.
    Choi YH; Kim JA; Lee W
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32906834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels.
    Stan CA; Ellerbee AK; Guglielmini L; Stone HA; Whitesides GM
    Lab Chip; 2013 Feb; 13(3):365-76. PubMed ID: 23212283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple-Line Particle Focusing under Viscoelastic Flow in a Microfluidic Device.
    Yang SH; Lee DJ; Youn JR; Song YS
    Anal Chem; 2017 Mar; 89(6):3639-3647. PubMed ID: 28225617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size-Dependent Inertial Focusing Position Shift and Particle Separations in Triangular Microchannels.
    Kim JA; Lee JR; Je TJ; Jeon EC; Lee W
    Anal Chem; 2018 Feb; 90(3):1827-1835. PubMed ID: 29271639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical modeling of the behavior of an elastic capsule in a microchannel flow: The initial motion.
    Ma G; Hua J; Li H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046710. PubMed ID: 19518383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels.
    Park JS; Jung HI
    Anal Chem; 2009 Oct; 81(20):8280-8. PubMed ID: 19775116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inertial migration of aerosol particles in three-dimensional microfluidic channels.
    Qian S; Jiang M; Liu Z
    Particuology; 2021 Apr; 55():23-34. PubMed ID: 38620251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inertial manipulation of bubbles in rectangular microfluidic channels.
    Hadikhani P; Hashemi SMH; Balestra G; Zhu L; Modestino MA; Gallaire F; Psaltis D
    Lab Chip; 2018 Mar; 18(7):1035-1046. PubMed ID: 29512658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active Control of Inertial Focusing Positions and Particle Separations Enabled by Velocity Profile Tuning with Coflow Systems.
    Lee D; Nam SM; Kim JA; Di Carlo D; Lee W
    Anal Chem; 2018 Feb; 90(4):2902-2911. PubMed ID: 29376342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A numerical lift force analysis on the inertial migration of a deformable droplet in steady and oscillatory microchannel flows.
    Lafzi A; Dabiri S
    Lab Chip; 2022 Aug; 22(17):3245-3257. PubMed ID: 35899760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Hydrodynamic Mechanism on Particles Focusing in Micro-Channel Flows.
    Wang Q; Yuan D; Li W
    Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Squeezing multiple soft particles into a constriction: Transition to clogging.
    Bielinski C; Aouane O; Harting J; Kaoui B
    Phys Rev E; 2021 Dec; 104(6-2):065101. PubMed ID: 35030949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of membrane deformability and bond formation/dissociation rates on adhesion dynamics of a spherical capsule in shear flow.
    Zhang Z; Du J; Wei Z; Wang Z; Li M
    Biomech Model Mechanobiol; 2018 Feb; 17(1):223-234. PubMed ID: 28879626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrodynamic lift of vesicles and red blood cells in flow--from Fåhræus & Lindqvist to microfluidic cell sorting.
    Geislinger TM; Franke T
    Adv Colloid Interface Sci; 2014 Jun; 208():161-76. PubMed ID: 24674656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Twin tubular pinch effect in curving confined flows.
    Clime L; Morton KJ; Hoa XD; Veres T
    Sci Rep; 2015 Apr; 5():9765. PubMed ID: 25927878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of non-Newtonian power law rheology on inertial migration of particles in channel flow.
    Hu X; Lin J; Chen D; Ku X
    Biomicrofluidics; 2020 Jan; 14(1):014105. PubMed ID: 31933715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of elastic modulus on inertial displacement of cell-like particles in microchannels.
    Dubay R; Fiering J; Darling EM
    Biomicrofluidics; 2020 Jul; 14(4):044110. PubMed ID: 32774585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deformability- and size-based microcapsule sorting.
    Vesperini D; Chaput O; Munier N; Maire P; Edwards-Lévy F; Salsac AV; Le Goff A
    Med Eng Phys; 2017 Oct; 48():68-74. PubMed ID: 28728866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.