BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2844421)

  • 1. Control of the G1-G0 transition and G0 protein synthesis by cyclic AMP in Saccharomyces cerevisiae.
    Shin DY; Uno I; Ishikawa T
    Curr Genet; 1987; 12(8):577-82. PubMed ID: 2844421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP promotes the synthesis in early G1 of gp115, a yeast glycoprotein containing glycosyl-phosphatidylinositol.
    Grandori R; Popolo L; Vai M; Alberghina L
    J Biol Chem; 1990 Aug; 265(24):14315-20. PubMed ID: 2167314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae.
    van Aelst L; Jans AW; Thevelein JM
    J Gen Microbiol; 1991 Feb; 137(2):341-9. PubMed ID: 1849965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase.
    Matsumoto K; Uno I; Ishikawa T
    Exp Cell Res; 1983 Jun; 146(1):151-61. PubMed ID: 6305691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation.
    Shin DY; Matsumoto K; Iida H; Uno I; Ishikawa T
    Mol Cell Biol; 1987 Jan; 7(1):244-50. PubMed ID: 3031463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive glucose-induced activation of the Ras-cAMP pathway and aberrant stationary-phase entry on a glucose-containing medium in the Saccharomyces cerevisiae glucose-repression mutant hex2.
    Dumortier F; Argüelles JC; Thevelein JM
    Microbiology (Reading); 1995 Jul; 141 ( Pt 7)():1559-66. PubMed ID: 7551024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: evidence from mutants unable to synthesize it.
    Matsumoto K; Uno I; Ishikawa T; Oshima Y
    J Bacteriol; 1983 Nov; 156(2):898-900. PubMed ID: 6313623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase.
    Matsumoto K; Uno I; Oshima Y; Ishikawa T
    Proc Natl Acad Sci U S A; 1982 Apr; 79(7):2355-9. PubMed ID: 6285379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the cAMP pathway by the cell cycle start function, CDC25, in Saccharomyces cerevisiae.
    Tripp ML; Piñon R
    J Gen Microbiol; 1986 May; 132(5):1143-51. PubMed ID: 3021894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The adenylate cyclase/protein kinase cascade regulates entry into meiosis in Saccharomyces cerevisiae through the gene IME1.
    Matsuura A; Treinin M; Mitsuzawa H; Kassir Y; Uno I; Simchen G
    EMBO J; 1990 Oct; 9(10):3225-32. PubMed ID: 2209544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of expression of the stress-inducible p118 of Saccharomyces cerevisiae by cAMP. II. A study of p118 expression in mutants of the cAMP cascade.
    Verma R; Iida H; Pardee AB
    J Biol Chem; 1988 Jun; 263(18):8576-82. PubMed ID: 2837458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae.
    Boy-Marcotte E; Perrot M; Bussereau F; Boucherie H; Jacquet M
    J Bacteriol; 1998 Mar; 180(5):1044-52. PubMed ID: 9495741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae: correlation with cAMP levels and growth arrest.
    Russell M; Bradshaw-Rouse J; Markwardt D; Heideman W
    Mol Biol Cell; 1993 Jul; 4(7):757-65. PubMed ID: 8400461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High cAMP levels antagonize the reprogramming of gene expression that occurs at the diauxic shift in Saccharomyces cerevisiae.
    Boy-Marcotte E; Tadi D; Perrot M; Boucherie H; Jacquet M
    Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():459-467. PubMed ID: 8868420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increases in cell size at START caused by hyperactivation of the cAMP pathway in Saccharomyces cerevisiae.
    Mitsuzawa H
    Mol Gen Genet; 1994 Apr; 243(2):158-65. PubMed ID: 8177212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae.
    Cameron S; Levin L; Zoller M; Wigler M
    Cell; 1988 May; 53(4):555-66. PubMed ID: 2836063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Substrate-induced cAMP signals in wild-type and mutant strains of Saccharomyces cerevisiae].
    Sachse O
    J Basic Microbiol; 1990; 30(6):443-50. PubMed ID: 2177787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the hsp26 of Saccharomyces cerevisiae.
    Silva JT; Verícimo MA; Floriano WB; Dutra MB; Panek AD
    Biochem Mol Biol Int; 1994 May; 33(2):211-20. PubMed ID: 7951041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bcy1, the regulatory subunit of cAMP-dependent protein kinase in yeast, is differentially modified in response to the physiological status of the cell.
    Werner-Washburne M; Brown D; Braun E
    J Biol Chem; 1991 Oct; 266(29):19704-9. PubMed ID: 1655793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of the CDC25 gene product in Saccharomyces cerevisiae leads to a decrease in glycolytic activity which is independent of cAMP levels.
    Oehlen LJ; Scholte ME; de Koning W; van Dam K
    J Gen Microbiol; 1993 Sep; 139(9):2091-100. PubMed ID: 8245836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.