BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 28444238)

  • 41. Increased complexity of circRNA expression during species evolution.
    Dong R; Ma XK; Chen LL; Yang L
    RNA Biol; 2017 Aug; 14(8):1064-1074. PubMed ID: 27982734
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The emerging landscape of circular RNA in life processes.
    Qu S; Zhong Y; Shang R; Zhang X; Song W; Kjems J; Li H
    RNA Biol; 2017 Aug; 14(8):992-999. PubMed ID: 27617908
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep Computational Circular RNA Analytics from RNA-seq Data.
    Jakobi T; Dieterich C
    Methods Mol Biol; 2018; 1724():9-25. PubMed ID: 29322437
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1.
    Abdelmohsen K; Panda AC; Munk R; Grammatikakis I; Dudekula DB; De S; Kim J; Noh JH; Kim KM; Martindale JL; Gorospe M
    RNA Biol; 2017 Mar; 14(3):361-369. PubMed ID: 28080204
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of Circular RNAs (circRNA) Associated with the Translation Machinery.
    Bartsch D; Zirkel A; Kurian L
    Methods Mol Biol; 2018; 1724():159-166. PubMed ID: 29322448
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Poly(A)-ClickSeq: click-chemistry for next-generation 3΄-end sequencing without RNA enrichment or fragmentation.
    Routh A; Ji P; Jaworski E; Xia Z; Li W; Wagner EJ
    Nucleic Acids Res; 2017 Jul; 45(12):e112. PubMed ID: 28449108
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alterations of circular RNAs in hyperglycemic human endothelial cells.
    Shang FF; Luo S; Liang X; Xia Y
    Biochem Biophys Res Commun; 2018 May; 499(3):551-555. PubMed ID: 29596825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human Survival Motor Neuron genes generate a vast repertoire of circular RNAs.
    Ottesen EW; Luo D; Seo J; Singh NN; Singh RN
    Nucleic Acids Res; 2019 Apr; 47(6):2884-2905. PubMed ID: 30698797
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Circular RNA expression profiling of human granulosa cells during maternal aging reveals novel transcripts associated with assisted reproductive technology outcomes.
    Cheng J; Huang J; Yuan S; Zhou S; Yan W; Shen W; Chen Y; Xia X; Luo A; Zhu D; Wang S
    PLoS One; 2017; 12(6):e0177888. PubMed ID: 28644873
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification.
    Gao Y; Wang J; Zhao F
    Genome Biol; 2015 Jan; 16(1):4. PubMed ID: 25583365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons.
    Aufiero S; van den Hoogenhof MMG; Reckman YJ; Beqqali A; van der Made I; Kluin J; Khan MAF; Pinto YM; Creemers EE
    RNA; 2018 Jun; 24(6):815-827. PubMed ID: 29567830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CSCD: a database for cancer-specific circular RNAs.
    Xia S; Feng J; Chen K; Ma Y; Gong J; Cai F; Jin Y; Gao Y; Xia L; Chang H; Wei L; Han L; He C
    Nucleic Acids Res; 2018 Jan; 46(D1):D925-D929. PubMed ID: 29036403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Circular RNA profiling reveals that circCOL3A1-859267 regulate type I collagen expression in photoaged human dermal fibroblasts.
    Peng Y; Song X; Zheng Y; Wang X; Lai W
    Biochem Biophys Res Commun; 2017 Apr; 486(2):277-284. PubMed ID: 28286269
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Circular RNA Profiling and Bioinformatic Modeling Identify Its Regulatory Role in Hepatic Steatosis.
    Guo XY; He CX; Wang YQ; Sun C; Li GM; Su Q; Pan Q; Fan JG
    Biomed Res Int; 2017; 2017():5936171. PubMed ID: 28717649
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs.
    Zheng Q; Bao C; Guo W; Li S; Chen J; Chen B; Luo Y; Lyu D; Li Y; Shi G; Liang L; Gu J; He X; Huang S
    Nat Commun; 2016 Apr; 7():11215. PubMed ID: 27050392
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CircRNA accumulation in the aging mouse brain.
    Gruner H; Cortés-López M; Cooper DA; Bauer M; Miura P
    Sci Rep; 2016 Dec; 6():38907. PubMed ID: 27958329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The emerging role of circular RNAs in transcriptome regulation.
    Huang S; Yang B; Chen BJ; Bliim N; Ueberham U; Arendt T; Janitz M
    Genomics; 2017 Oct; 109(5-6):401-407. PubMed ID: 28655641
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular roles and function of circular RNAs in eukaryotic cells.
    Holdt LM; Kohlmaier A; Teupser D
    Cell Mol Life Sci; 2018 Mar; 75(6):1071-1098. PubMed ID: 29116363
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using circular RNA as a novel type of biomarker in the screening of gastric cancer.
    Li P; Chen S; Chen H; Mo X; Li T; Shao Y; Xiao B; Guo J
    Clin Chim Acta; 2015 Apr; 444():132-6. PubMed ID: 25689795
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals.
    Ivanov A; Memczak S; Wyler E; Torti F; Porath HT; Orejuela MR; Piechotta M; Levanon EY; Landthaler M; Dieterich C; Rajewsky N
    Cell Rep; 2015 Jan; 10(2):170-7. PubMed ID: 25558066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.