BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 28444416)

  • 1. Control of DNA integrity in skeletal muscle under physiological and pathological conditions.
    Bou Saada Y; Zakharova V; Chernyak B; Dib C; Carnac G; Dokudovskaya S; Vassetzky YS
    Cell Mol Life Sci; 2017 Oct; 74(19):3439-3449. PubMed ID: 28444416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Homeostasis in Muscular Dystrophies.
    Mosca N; Petrillo S; Bortolani S; Monforte M; Ricci E; Piemonte F; Tasca G
    Cells; 2021 Jun; 10(6):. PubMed ID: 34205993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apoptosis and muscle fibre loss in neuromuscular disorders.
    Tews DS
    Neuromuscul Disord; 2002 Oct; 12(7-8):613-22. PubMed ID: 12207928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics of skeletal muscle differentiation, neuromuscular disorders and fiber aging.
    Ohlendieck K
    Expert Rev Proteomics; 2010 Apr; 7(2):283-96. PubMed ID: 20377394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress and muscle homeostasis.
    Musarò A; Fulle S; Fanò G
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):236-42. PubMed ID: 20098320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human skeletal muscle aging and the oxidative system: cellular events.
    Rossi P; Marzani B; Giardina S; Negro M; Marzatico F
    Curr Aging Sci; 2008 Dec; 1(3):182-91. PubMed ID: 20021391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of carnosine in aging of skeletal muscle and in neuromuscular diseases.
    Stuerenburg HJ
    Biochemistry (Mosc); 2000 Jul; 65(7):862-5. PubMed ID: 10951106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic Silicon Protects Oxidative Damage and Promotes Skeletal Muscle Cell Regeneration.
    Awad K; Ahuja N; Fiedler M; Peper S; Wang Z; Aswath P; Brotto M; Varanasi V
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle.
    Sakellariou GK; Pearson T; Lightfoot AP; Nye GA; Wells N; Giakoumaki II; Griffiths RD; McArdle A; Jackson MJ
    FASEB J; 2016 Nov; 30(11):3771-3785. PubMed ID: 27550965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic stability and telomere regulation in skeletal muscle tissue.
    Trajano LADSN; Trajano ETL; Silva MADS; Stumbo AC; Mencalha AL; Fonseca ASD
    Biomed Pharmacother; 2018 Feb; 98():907-915. PubMed ID: 29571261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tinospora cordifolia protects from skeletal muscle atrophy by alleviating oxidative stress and inflammation induced by sciatic denervation.
    Sharma B; Dutt V; Kaur N; Mittal A; Dabur R
    J Ethnopharmacol; 2020 May; 254():112720. PubMed ID: 32114167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and cellular basis of genetically inherited skeletal muscle disorders.
    Dowling JJ; Weihl CC; Spencer MJ
    Nat Rev Mol Cell Biol; 2021 Nov; 22(11):713-732. PubMed ID: 34257452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox homeostasis and age-related deficits in neuromuscular integrity and function.
    Sakellariou GK; Lightfoot AP; Earl KE; Stofanko M; McDonagh B
    J Cachexia Sarcopenia Muscle; 2017 Dec; 8(6):881-906. PubMed ID: 28744984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders with Cardiac Phenotype.
    Ignatieva E; Smolina N; Kostareva A; Dmitrieva R
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for reducing oxidative damage in ageing skeletal muscle.
    Jackson MJ
    Adv Drug Deliv Rev; 2009 Nov; 61(14):1363-8. PubMed ID: 19737589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA Damage Response and DNA Repair in Skeletal Myocytes From a Mouse Model of Spinal Muscular Atrophy.
    Fayzullina S; Martin LJ
    J Neuropathol Exp Neurol; 2016 Sep; 75(9):889-902. PubMed ID: 27452406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DUX4-induced constitutive DNA damage and oxidative stress contribute to aberrant differentiation of myoblasts from FSHD patients.
    Dmitriev P; Bou Saada Y; Dib C; Ansseau E; Barat A; Hamade A; Dessen P; Robert T; Lazar V; Louzada RAN; Dupuy C; Zakharova V; Carnac G; Lipinski M; Vassetzky YS
    Free Radic Biol Med; 2016 Oct; 99():244-258. PubMed ID: 27519269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species.
    Jackson MJ; McArdle A
    J Physiol; 2011 May; 589(Pt 9):2139-45. PubMed ID: 21320885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of cannabinoid type 2 receptor protects skeletal muscle from ischemia-reperfusion injury partly via Nrf2 signaling.
    Zhang M; Zhang M; Wang L; Yu T; Jiang S; Jiang P; Sun Y; Pi J; Zhao R; Guan D
    Life Sci; 2019 Aug; 230():55-67. PubMed ID: 31128135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between human aging muscle and oxidative system pathway.
    Doria E; Buonocore D; Focarelli A; Marzatico F
    Oxid Med Cell Longev; 2012; 2012():830257. PubMed ID: 22685621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.