BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28444485)

  • 1. Evaluation of kinetic programs in various automated perimeters.
    Hashimoto S; Matsumoto C; Eura M; Okuyama S; Shimomura Y
    Jpn J Ophthalmol; 2017 Jul; 61(4):299-306. PubMed ID: 28444485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-automated kinetic perimetry: Comparison of the Octopus 900 and Humphrey visual field analyzer 3 versus Goldmann perimetry.
    Bevers C; Blanckaert G; Van Keer K; Fils JF; Vandewalle E; Stalmans I
    Acta Ophthalmol; 2019 Jun; 97(4):e499-e505. PubMed ID: 30345638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of kinetic perimetry assessment with the Humphrey 850; an exploratory comparative study.
    Rowe FJ; Hepworth LR; Hanna KL; Mistry M; Noonan CP
    Eye (Lond); 2019 Dec; 33(12):1952-1960. PubMed ID: 31332292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a new fully automated kinetic algorithm (program k) for detection of glaucomatous visual field loss.
    Hashimoto S; Matsumoto C; Okuyama S; Takada S; Arimura-Koike E; Shimomura Y
    Invest Ophthalmol Vis Sci; 2015 Mar; 56(3):2092-9. PubMed ID: 25744980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of diagnostic accuracy between Octopus 900 and Goldmann kinetic visual fields.
    Rowe FJ; Rowlands A
    Biomed Res Int; 2014; 2014():214829. PubMed ID: 24587983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility and outcome of automated kinetic perimetry in children.
    Wilscher S; Wabbels B; Lorenz B
    Graefes Arch Clin Exp Ophthalmol; 2010 Oct; 248(10):1493-500. PubMed ID: 20232076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of octopus 101 GKP kinetic and static automated perimetry in the diagnosis of the primary open angle glaucoma].
    Zhong Y; Shi W; Zhao P; Ai FR; Wang RY
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2007 Jun; 29(3):413-7. PubMed ID: 17633473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the Visual Field Loss in Retinitis Pigmentosa Using Semi-Automated Kinetic Perimetry.
    Nowomiejska K; Brzozowska A; Koss MJ; Weleber RG; Schiefer U; Rejdak K; Juenemann AG; Maciejewski R; Rejdak R
    Curr Eye Res; 2016 Jul; 41(7):993-8. PubMed ID: 26470834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of Optimal Perimetric Testing in Children (OPTIC): evaluation of kinetic approaches in childhood neuro-ophthalmic disease.
    Patel DE; Cumberland PM; Walters BC; Cortina-Borja M; Rahi JS;
    Br J Ophthalmol; 2019 Aug; 103(8):1085-1091. PubMed ID: 30232171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative evaluation of Octopus semi-automated kinetic perimeter with Humphrey and Goldmann perimeters in neuro-ophthalmic disorders.
    Bhaskaran K; Phuljhele S; Kumar P; Saxena R; Angmo D; Sharma P
    Indian J Ophthalmol; 2021 Apr; 69(4):918-922. PubMed ID: 33727459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of manual kinetic and automated static perimetry in obtaining ptosis fields.
    Riemann CD; Hanson S; Foster JA
    Arch Ophthalmol; 2000 Jan; 118(1):65-9. PubMed ID: 10636416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma.
    Patel DE; Cumberland PM; Walters BC; Russell-Eggitt I; Brookes J; Papadopoulos M; Khaw PT; Viswanathan AC; Garway-Heath D; Cortina-Borja M; Rahi JS;
    JAMA Ophthalmol; 2018 Feb; 136(2):155-161. PubMed ID: 29285534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between semiautomated kinetic perimetry and conventional Goldmann manual kinetic perimetry in advanced visual field loss.
    Nowomiejska K; Vonthein R; Paetzold J; Zagorski Z; Kardon R; Schiefer U
    Ophthalmology; 2005 Aug; 112(8):1343-54. PubMed ID: 15996734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of Optimal Perimetric Testing in Children (OPTIC): Feasibility, Reliability and Repeatability of Perimetry in Children.
    Patel DE; Cumberland PM; Walters BC; Russell-Eggitt I; Rahi JS;
    PLoS One; 2015; 10(6):e0130895. PubMed ID: 26091102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The normal age-corrected and reaction time-corrected isopter derived by semi-automated kinetic perimetry.
    Vonthein R; Rauscher S; Paetzold J; Nowomiejska K; Krapp E; Hermann A; Sadowski B; Chaumette C; Wild JM; Schiefer U
    Ophthalmology; 2007 Jun; 114(6):1065-72. PubMed ID: 17331580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [I have tested for you. Automated kinetic perimetry].
    Chopin-Mouton D
    J Fr Ophtalmol; 2006 May; 29 Spec No 2():36-9. PubMed ID: 17072220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Threshold equivalence between perimeters.
    Anderson DR; Feuer WJ; Alward WL; Skuta GL
    Am J Ophthalmol; 1989 May; 107(5):493-505. PubMed ID: 2712132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Octopus 900 Automated Kinetic Perimetry versus Standard Automated Static Perimetry in Glaucoma Practice.
    Rowe FJ; Czanner G; Somerville T; Sood I; Sood D
    Curr Eye Res; 2021 Jan; 46(1):83-95. PubMed ID: 32564629
    [No Abstract]   [Full Text] [Related]  

  • 19. Detection of Visual Field Loss in Pituitary Disease: Peripheral Kinetic Versus Central Static.
    Rowe FJ; Cheyne CP; García-Fiñana M; Noonan CP; Howard C; Smith J; Adeoye J
    Neuroophthalmology; 2015 Jun; 39(3):116-124. PubMed ID: 27928344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of quantitative testing with the Octopus, Humphrey, and Tübingen perimeters.
    Mills RP; Hopp RH; Drance SM
    Am J Ophthalmol; 1986 Oct; 102(4):496-504. PubMed ID: 3766667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.